DOI QR코드

DOI QR Code

A Study on Entrance Evaluation System for Data Scientist Postgraduate Program

대학원 데이터 과학자 과정 입학 평가 체계 분석

  • 김미정 (고려대학교 대학원 컴퓨터학과) ;
  • 김자미 (고려대학교 교육대학원 컴퓨터교육전공) ;
  • 이원규 (고려대학교 대학원 컴퓨터학과)
  • Received : 2020.03.09
  • Accepted : 2020.05.07
  • Published : 2020.05.31

Abstract

Organizing entrance evaluation system for selecting students who can become expert in data science field according to need of the age and social demand is important. This study was conducted for the purpose of analyzing data science field graduate school entrance evaluation system and deriving implications after taking into account the importance of talents possessing convergence competency. For this aim, a total of 22 graduate schools in 7 countries have been selected targeting data scientist postgraduate program around the world. The selected graduate schools have been analyzed based on qualifications, necessary skills prior to entrance, entrance conditions, and selection methods. As a result of the analysis, 'graduate school which I can apply for regardless of possessing undergraduate degree or undergraduate major (63.6 percent)' in qualifications category, 'graduate school which mentioned skills required in completing master's degree prior to entrance (63.6 percent)' in skills required prior to entrance category, 'graduate school which does not mention separate entrance condition (81.8 percent)' in entrance conditions category, and 'graduate school selecting students merely based on document screening (68.2 percent)' in selection methods category took the highest portion. Based on the above, this study summarized the results of the data scientist process and suggested implications for objectifying admission evaluation.

시대적 필요와 사회적 요구에 따라 데이터 과학 분야의 전문가로 성장할 수 있는 학생을 선발하기 위한 입학 평가 체계의 구성은 중요하다. 본 연구는 융·복합 역량을 갖춘 인재 선발의 중요성을 고려하여 데이터 과학 분야 대학원 입학 평가 체계를 분석하고, 시사점을 도출하기 위한 목적에서 진행되었다. 목적 달성을 위해 전 세계 대학원 데이터 과학자 과정을 대상으로 총 7개국 22개 대학원을 선정하였다. 선정된 대학원들을 지원 자격, 입학 전 필요 기술, 입학 조건, 선발 방법별로 분석하였다. 분석 결과, 지원 자격은 '최소 학사학위 소지자 또는 학사과정 전공과 관계없이 입학 지원 가능한 학교(63.6%)', 입학 전 필요 기술은 '교육과정 이수에 필요한 입학 전 기술을 명시한 학교(63.6%)', 입학 조건은 '별도 입학 조건이 따로 명시되어 있지 않은 학교(81.8%)', 선발 방법은 '서류 심사로만 학생을 선발하는 학교(68.2%)'가 가장 많았다. 이상을 토대로 본 연구는 데이터 과학자 과정의 결과를 정리하고, 입학 평가를 객관화하기 위한 시사점을 제시하였다.

Keywords

References

  1. BSA. What's the Big Deal with Data? BSA The Software Alliance.
  2. Lizhe Wang, Rajiv Ranjan. (2015). Processing distributed internet of things data in clouds. IEEE Cloud Computing, 2(1), 76-80. https://doi.org/10.1109/MCC.2015.14
  3. Erik Brynjolfsson, Kristina McElheran. (2016). The Rapid Adoption of Data-Driven Decision-Making. American Economic Review, 106(5), 133-139. https://doi.org/10.1257/aer.p20161016
  4. James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, Angela Hung Byers. (2011). Big data: The next frontier for innovation, competition, and productivity. Competition & Productivity, 1-143.
  5. Peter Bruce, Andrew Bruce. (2017). Practical Statistics for Data Scientists: 50 Essential Concepts. O'Reilly Media, Inc.
  6. 정철민 (2014). 학문 융복합 현상에 대한 교육학적 고찰. 교육철학, 54, 143-166.
  7. 강지혜.이병길.권승아 (2019). 대학 역량기반 교육과정에서 교육목표-교육과정-평가의 유기적인 연계를 위한 설계 전략의 탐색. 교육공학연구, 35(2), 527-549.
  8. Austin Waters, Risto Miikkulainen. (2014). GRADE: Machine-Learning Support for Graduate Admissions. AI Magazine. 35(1), 64-75. https://doi.org/10.1609/aimag.v35i1.2504
  9. Deepa Chari, Geoff Potvin. (2019). Understanding the importance of graduate admissions criteria according to prospective graduate students. Physical Review Physics Education Research, 15(2), 023101-1-023101-6. https://doi.org/10.1103/PhysRevPhysEducRes.15.023101
  10. Geoff Potvin, Deepa Chari, Theodore Hodapp. (2017). Investigating approaches to diversity in a national survey of physics doctoral degree programs: The graduate admissions landscape. Physical Review Physics Education Research, 13(2), 020142-1-020142-13. https://doi.org/10.1103/PhysRevPhysEducRes.13.020142
  11. Julie R. Posselt. (2014). Toward Inclusive Excellence in Graduate Education: Constructing Merit and Diversity in PhD Admissions. American Journal of Education, 120(4), 481-514. https://doi.org/10.1086/676910
  12. Marenda A. Wilson, Max A. Odem, Taylor Walters, Anthony L. DePass, Andrew J. Bean. (2019). A model for holistic review in graduate admissions that decouples the gre from race, ethnicity, and gender. CBE Life Sciences Education, 18(1), 18:ar7,1-18:ar7,12.
  13. Bryan J. Pestaa, John Fuerstb, Emil O.W. Kirkegaardb, Brent Papaleoc. (2019). Does intelligence explain national score variance on graduate admissions exams?, Intelligence, 73, 8-15. https://doi.org/10.1016/j.intell.2019.01.008
  14. Rachel E. Scherr, Monica Plisch, Kara E. Gray, Geoff Potvin, Theodore Hodapp. (2017). Fixed and growth mindsets in physics graduate admissions. Physical Review Physics Education Research, 13(2), 020133-1-020133-12. https://doi.org/10.1103/PhysRevPhysEducRes.13.020133
  15. Julie R. Posselt. (2018). Rigor and Support in Racialized Learning Environments: The Case of Graduate Education. New Directions for Higher Education, 2018(181), 59-70. https://doi.org/10.1002/he.20271
  16. Christa Boske, Chinasa Elue. (2017). Are You Qualified to Be a Member of This "Elite Group"? A School Leadership Preparation Program Examines the Extent "Diverse" Candidates Are Admitted to Graduate School. Journal of Cases in Educational Leadership, 20(2), 145-162. https://doi.org/10.1177/1555458916686645
  17. Rex Pjesky, Angela Spaulding, Janet Wood. (2019). Factors Determining Attendance in Graduate Programs: Differences in Admitted and Enrolled Students. Research in Higher Education Journal, 36.
  18. Ronald M. Epstein, Edward M. Hundert. (2002). Defining and assessing professional competence. Journal of the American Medical Association, 287(2), 226-235. https://doi.org/10.1001/jama.287.2.226
  19. Genevieve Bassellier, Blaize Horner Reich, Izak Benbasat. (2001). Information Technology Competence of Business Managers: A Definition and Research Model. Journal of Management Information Systems, 17(4), 159-182. https://doi.org/10.1080/07421222.2001.11045660
  20. Robert A. Roe (2002). What makes a competent psychologist?. European Psychologist, 7(3), 192-202. https://doi.org/10.1027//1016-9040.7.3.192
  21. OECD. (2002). Definition and selection of competences( DeSeCo):theoretical and conceptual foundations: strategy paper.
  22. Yuanjing Wilcox, Jean A. King. (2013). A professional grounding and history of the development and formal use of evaluator competencies. Canadian Journal of Program Evaluation, 28(3), 1-28.
  23. Boriss Misnevs, Irina Yatskiv. (2016). Data Science: Professional Requirements and Competence Evaluation. Baltic Journal of Modern Computing, 4(3), 441-453.
  24. Catherine Manathunga, Paul Lant, George Mellick. (2007). Developing professional researchers: research students' graduate attributes. Studies in Continuing Education, 29(1), 19-36. https://doi.org/10.1080/01580370601146270
  25. Mercedes Teijeiro, Paolo Rungo, M Jesus Freire. (2013). Graduate competencies and employability: The impact of matching firms' needs and personal attainments. Economics of Education Review, 34, 286-295. https://doi.org/10.1016/j.econedurev.2013.01.003
  26. World Economic Forum. (2016). The 10 skills you need to thrive in the Fourth Industrial Revolution. https://www.wefo rum.org/agenda/2016/01/the-10-skills-you-need-to-thrive-i n-the-fourth-industrial-revolution.
  27. OECD. Definition and Selection of Competencies (DeSeCo). https://www.oecd.org/education/skills-beyond-school/defin itionandselectionofcompetenciesdeseco.htm.
  28. JABEE. https://jabee.org/about_jabee/accreditation_system
  29. ENAEE. EUR-ACE${(R)}$ Framework Standards and Guidelines. https://www.enaee.eu/eur -ace-system/standards- and-guidelines.
  30. AMS. Accreditation Management System 2019. https://www.engineersaustralia.org.au/About-Us/Accreditation/AMS-2019.
  31. 이영호 (2015). 법학전문대학원 졸업생에게 요구되는 핵심역량. 성균관법학, 27(4), 427-452. https://doi.org/10.17008/SKKLR.2015.27.4.015
  32. 표준국어대사전
  33. 김동연 (2018). NCS 기반 전문대학 교육과정을 효과적으로 운영하기 위한 평가 체계 및 평가 도구 개발. 교원교육, 34(4), 1-16.
  34. Larry J. McKenzie, Michael S. Trevisan, Denny C. Davis, Steven W. Beyerlein. (2004). Capstone design courses and assessment: A national study. ASEE Annual Conference Proceedings, 1545-1562.
  35. Judith Zimmermann, Alina von Davier, Hans Rudolf Heinimann. (2017). Adaptive admissions process for effective and fair graduate admission. The International Journal of Educational Management, 31(4), 540-558. https://doi.org/10.1108/IJEM-06-2015-0080
  36. Julie Renee Posselt (2016). Inside Graduate Admissions : Merit, Diversity, and Faculty Gatekeeping. Harvard University Press.
  37. Danny Gittings (2011). What Will Happen to Hong Kong After 2047?. California Western International Law Journal, 42, 37-61.
  38. QS TOP Universities. https://www.topuniversities.com/uni versity-rankings.
  39. Data Science Degree Programs Guide. https://www.datasc iencedegreeprograms.net.
  40. 신현석.반상진.이석열 (2005). 외국의 대학원 교육체제 분석 연구: 발전적 대학원 교육체제 구상을 위한 정책적 함의. 비교교육연구, 15(2), 53-86.
  41. 정은경 (2007). 대학원 현대문학전공 교육과정의 현황과 교육방법에 관한 비교 고찰. 어문논집, 55, 353-403.
  42. 김병주.박승태 (2011). 교사의 핵심역량에 근거한 전문대학 유아교육과 수업연한. 한국교원교육연구, 28(3), 1-28. https://doi.org/10.24211/TJKTE.2011.28.3.1
  43. Mike Loukides (2012). What Is Data Science?. O'Reilly Media.
  44. 정인식 (역) (2014). 데이터 과학자, 무엇을 배울 것인가. 佐藤洋行 외 11인의 データサイエンティスト養成読本. 파주: 제이펍.
  45. Renato Rosaldo (1981). The Cultural Impact of the Printed Word: A Review Article. Comparative Studies in Society and History, 23(3), 508-513. https://doi.org/10.1017/S0010417500013475
  46. Nate Silver (2012). The Signal and the Noise: Why So Many Predictions Fail-but Some Don't. Penguin Books.
  47. 이원규 (역) (2018). 기초정보학 : 생명에서 사회로. 西垣通의 基礎情報学. 서울: 고려대학교출판문화원.