DOI QR코드

DOI QR Code

Study on terahertz (THz) photoconversion technology based on hyperfine energy-level splitting of Positronium (Ps) generated from relativistic electron beams

  • Sun-Hong Min (Korea Institute of Radiological & Medical Sciences) ;
  • Chawon Park (Korea Institute of Radiological & Medical Sciences) ;
  • Ilsung Cho (Korea Institute of Radiological & Medical Sciences) ;
  • Minho Kim (Korea Institute of Radiological & Medical Sciences) ;
  • Sukhwal Ma (Korea Institute of Radiological & Medical Sciences) ;
  • Won Taek Hwang (Korea Institute of Radiological & Medical Sciences) ;
  • Kyeong Min Kim (Korea Institute of Radiological & Medical Sciences) ;
  • Seungwoo Park (Korea Institute of Radiological & Medical Sciences) ;
  • Min Young Lee (Korea Institute of Radiological & Medical Sciences) ;
  • Eun Ju Kim (Korea Institute of Radiological & Medical Sciences) ;
  • Kyo Chul Lee (Korea Institute of Radiological & Medical Sciences) ;
  • Yong Jin Lee (Korea Institute of Radiological & Medical Sciences) ;
  • Bong Hwan Hong (Korea Institute of Radiological & Medical Sciences)
  • Received : 2020.12.17
  • Accepted : 2020.12.29
  • Published : 2020.12.31

Abstract

In the state of Positronium (Ps), which is an unstable material created by the temporary combination of electrons and positrons, the imaging technology through photo-conversion methodology is emerging as a new research theme under resonance conditions through terahertz electromagnetic waves. Normally, Positronium can be observed in the positron emission computed tomography (PET) process when an unstable, separate state that remains after the pair annihilation of an electron and a positron remains. In this study, terahertz (THz) waves and Cherenkov radiation (CR) are generated using the principle of ponderomotive force in the plasma wake-field acceleration, and electrons and positrons are simultaneously generated by using a relativistic electron beam without using a PET device. We confirm the possibility of Positronium photoconversion technology in terahertz electromagnetic resonance conditions through experimental studies that generate an unstable state. Here, a relativistic electron beam (REB) energy of 0.5 MeV (γ=2) was used, and the terahertz wave frequencies is G-band. Meanwhile, a THz wave mode converting three-stepped axicon lens was used to apply the photoconversion technology. Through this, light emission in the form of a luminescence-converted Bessel beam can be verified. In the future, it can be used complementarily with PET in nuclear medicine in the field of medical imaging.

Keywords

Acknowledgement

This study was also supported by a grant of the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by the Ministry of Science and ICT (MSIT), Republic of Korea. (No. 50532-2020, 50537-2020)

References

  1. Brawley SJ, Armitage S, Beale J, Leslie DE, Williams AI, Laricchia G. Electron-Like Scattering of Positronium. Science 2016;330
  2. Kaminska D et al. A feasibility study of orthopositronium decays measurement with the J-PET scanner based on plastic scintillators. Eur. Phys. J. C 2016;76:445
  3. Miyazaki A. Direct Measurement of the Hyperfine Structure Interval of Positronium Using High-Power Millimeter Wave Technology. Springer Japan 2015
  4. Hugenschmidt C. Positrons insurfacephysics. Surf. Sci. Rep. 2016;71:547-594
  5. Cassidy DB, Mills Jr AP. The production of molecular positronium. Nature. 2007;449:13:195-197
  6. Moskal P, Jasinska B, Stepien EL, Bass SD. Positronium in medicine and biology. Nat. Rev. Phys. 2019;1:527-529
  7. Jung KO et al. Whole-body tracking of single cells via positron emission tomography. Nat. Biomed. Eng. 2020;4:835-844
  8. Moskal P et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys. Med. Biol. 2019;64:055017
  9. Moskal P. Towards total-body modular PET for positronium and quantum entanglement imaging. 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)
  10. Shaffer TM, Pratt EC, Grimm J. Utilizing the power of Cerenkov light with nanotechnology. Nat. Nanotechnol. 2017;12:106-117
  11. Miyazaki A, Yamazaki T, Suehara T, Namba T, Asai S,Kobayashi T,Saito H,Tatematsu Y, Ogawa I, Idehara T. sub-THz direct spectroscopy of positronium hyperfine splitting. J. Phys. Conf. Ser. 2013;443:012002
  12. Miyazaki A et al. The Direct Spectroscopy of Positronium Hyperfine Structure Using a Sub-THz Gyrotron. J. Infrared. Milli. Terahz. Waves. 2014;35:91-100
  13. Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, Betzig E. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 2011;8:5:417-426
  14. Duocastella M, Arnold CB. Bessel and annular beams for materials processing. Laser Photonics Rev. 2012;6:5
  15. Mosk AP, Lagendijk A, Lerosey G, Fink M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics. 2012;6:283-292
  16. Zhu XL, Yu TP, Sheng ZM, Yin Y, Turcu ICE, Pukhov A. Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas. Nat. Commun. 2016;7:13686
  17. Ni J, Wang C, Zhang C, Hu Y, Yang L, Lao Z, Xu B,Li J, Wu D, Chu J. Light Sci. Appl. 2017;6:e17011
  18. Wu Z, Xinke Wang X, Sun W, Feng S, Han P, Ye J, Zhang Y. Vector characterization of zeroorder terahertz Bessel beams with linear and circular polarizations. Sci. Rep. 2017;7:13929
  19. Gu YJ, Klimo O, Bulanov SV, Weber S. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses. Commun. Phys. 2018;1:93
  20. Vranic M, Klimo O,Korn G, Weber S. Multi-GeV electron-positron beam generation from laser-electron scattering. Sci. Rep. 2018;8;4702
  21. Kulya MS. Semenova VA, Bespalov VG. Petrov NV. On terahertz pulsed broadband Gauss-Bessel beam free-space propagation. Sci. Rep. 2018;8:1390
  22. MENG Y, YI J, BUROKUR SN, KANG L, ZHANG H, WERNER DH. Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum. Opt. Express. 2018;26:17
  23. Gong L, Zhao Q, Zhang H, Hu XY, Huang K, Yang JM, Li YM. Optical orbital-angular-momentum multiplexed data transmission under high scattering. Light Sci. Appl. 2019;8:27
  24. Doche A. et al. Acceleration of a trailing positron bunch in a plasma wakefield accelerator. Sci. Rep. 2017;7:14180
  25. Min SH et al. Study of Coherent High-Power Electromagnetic Wave Generation Based on Cherenkov Radiation Using Plasma Wakefield Accelerator with Relativistic Electron Beam in Vacuum. J. Electromagn. Eng. Sci. 2018;29:6:407-410
  26. Min SH et al. Transient pulse analysis of ionized electronics exposed to γ-radiation generated from a relativistic electron beam. AIP Adv. 2018;8:025001
  27. Min SH et al. Ionizing radiation in electronics from the Compton scattering of quasi-stationary particles generated by characteristic and Bremsstrahlung x rays. AIP Adv. 2020;10:055110
  28. Thompson MC, Badakov H, Cook AM, Rosenzweig JB, Tikhoplav R, Travish G, Blumenfeld I, Hogan MJ, Ischebeck R, Kirby N, Siemann R, Walz D, Muggli P,Scott A, Yoder RB. Breakdown Limits on Gigavolt-per-Meter Electron-Beam-Driven Wakefields in Dielectric Structures. Phys. Rev. Lett. 2008:100:214801
  29. Cook AM, Tikhoplav R, Tochitsky SY, Travish G, Williams OB, Rosenzweig JB. Observation of Narrow-Band Terahertz Coherent Cherenkov Radiation from a Cylindrical Dielectric-Lined Waveguide. Phys. Rev. Lett. 2009:103:095003
  30. https://www.asphericon.com/en/products/axicons. Axicons - Highly precise from asphericon. Asphericon company.
  31. Jung HC, Min SH, Park GS, An J, Lee SH, Yoon YJ, Kim JY, Choi JH, So JH, Petelin M. Transmission of gigawatt-level microwave using a beam-rotating mode converter in a relativistic backward wave oscillator. Appl. Phys. Lett. 2010;96:13
  32. Min SH, Jung HC, Park GS, An J, Lee SH, Yoon YJ, Kim JY, Choi JH, So JH. Mode Conversion of High-Power Electromagnetic Microwave Using Coaxial-Beam Rotating Antenna in Relativistic Backward-Wave Oscillator. IEEE Trans. Plasma. Sci. 2010;38:6:1391-1397
  33. Min SH et al. Effects for electronics exposed to high power microwave on a basis of relativistic backward wave oscillator at X-band. J. Electromagn. Waves Appl. 2017;31:17:1875-1901
  34. Kilburn D, Townrow S, Meunier V, Richardson R, Alam A, Ubbink J. Organization and mobility of water in amorphous and crystalline trehalose. Nat. Mater. 2006;5:632-635