DOI QR코드

DOI QR Code

Recent Progress in Inorganic Nanoparticles with Enzyme-Mimetic Activities and Their Applications to Diagnosis and Therapy

효소 모사 활성 무기 나노입자의 진단 및 치료 응용연구 동향

  • Lee, Junsoo (Department of Chemical Engineering, Myongji University) ;
  • Kim, Taeyeon (Department of Chemical Engineering, Myongji University) ;
  • Kim, Bong-Geun (Department of Chemical Engineering, Myongji University) ;
  • Na, Hyon Bin (Department of Chemical Engineering, Myongji University)
  • Received : 2020.06.30
  • Accepted : 2020.07.20
  • Published : 2020.08.10

Abstract

Inorganic nanoparticles have been actively applied to the bio-medical field by utilizing their physical properties derived from the nanometer size regime, such as optical and magnetic properties. In recent years, diagnostic detection methods have been developed by employing chemical activity, particularly enzyme-mimetic activities, as well as physical properties of inorganic nanoparticles. After the initial study of verifying the enzyme-mimetic activities, the scope of research has been expanded to the direct use of therapeutic effects with active control of activity through understanding of the catalytic mechanism. This review summarizes recent research works on the active control of the enzyme-mimetic activities and newly demonstrated applications on the diagnosis and treatment of diseases, focusing on inorganic nanoparticles, so-called "nanozyme". It is expected that the enzyme-mimetic activity of inorganic nanoparticles will be combined with their inherent physical properties, leading to the development of new diagnostic and therapeutic methods.

무기 나노입자는 나노미터 크기에서 유래된 광학 및 자성 성질과 같은 물리적 특성을 활용하여 생명-의학 분야에 적극적으로 응용되어왔다. 최근에는 물리적 성질 이외에 무기 나노입자가 갖는 화학적 성질, 특히 효소와 유사한 촉매활성을 이용한 새로운 진단법들이 개발되고 있다. 효소 모사 활성의 검증에 집중하던 초기연구에서, 현재는 활성 메커니즘의 이해를 통한 적극적 활성 제어 및 치료 특성의 직접적 응용으로 연구 범위가 확장되고 있다. 본 총설에서는 효소 모사 활성을 갖는 무기 나노입자, 소위 "나노자임"의 촉매 활성 제어와 치료 및 진단 분야에서의 연구성과들에 대한 최근 동향을 정리하였다. 무기 나노입자의 효소 모사 활성은 입자의 고유한 물리적 성질과 결합되어 새로운 진단 및 치료법의 개발로 이어질 것으로 기대한다.

Keywords

References

  1. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci., 30, 545-610 (2000). https://doi.org/10.1146/annurev.matsci.30.1.545
  2. D. Kim, J. Kim, Y. I. Park, N. Lee, and T. Hyeon, Recent development of inorganic nanoparticles for biomedical imaging, ACS Cent. Sci., 4, 324-336 (2018). https://doi.org/10.1021/acscentsci.7b00574
  3. K. D. Wegner and N. Hildebrandt, Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors, Chem. Soc. Rev., 44, 4792-4834 (2015). https://doi.org/10.1039/c4cs00532e
  4. D. S. Kim and B. G. Choi, Preparation of surface functionalized gold nanoparticles and their lateral flow immunoassay applications, Appl. Chem. Eng., 29, 97-102 (2018). https://doi.org/10.14478/ace.2017.1109
  5. H. Fatima and K. Kim, Magnetic nanoparticles for bioseparation, Korean J. Chem. Eng., 34, 589-599 (2017). https://doi.org/10.1007/s11814-016-0349-2
  6. N. Lee, D. Yoo, D. Ling, M. H. Cho, T. Hyeon, and J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy, Chem. Rev., 115, 10637-10689 (2015). https://doi.org/10.1021/acs.chemrev.5b00112
  7. H. Wei and E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes, Chem. Soc. Rev., 42, 6060-6093 (2013). https://doi.org/10.1039/c3cs35486e
  8. H. Y. Shin, T. J. Park, and M. I. Kim, Recent research trends and future prospects in nanozymes, J. Nanomater., 2015, 756278 (2015).
  9. J. B. Sumner, The isolation and crystallization of the enzyme urease preliminary paper, J. Biol. Chem., 69, 435-441 (1926). https://doi.org/10.1016/S0021-9258(18)84560-4
  10. A. Balasubramanian and K. Ponnuraj, Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure, J. Mol. Biol., 400, 274-283 (2010). https://doi.org/10.1016/j.jmb.2010.05.009
  11. Mo. Dieguez, J.-E. Backvall, and O. Pamies, Artificial Metalloenzymes and Metallodnazymes in Catalysis: From Design to Applications, Wiley-VCH Verlag GmbH & Co., Weinheim, Germany (2018).
  12. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, and S. Perrett, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol., 2, 577-583 (2007). https://doi.org/10.1038/nnano.2007.260
  13. R. W. Tarnuzzer, J. Colon, S. Patil, and S. Seal, Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage, Nano Lett., 5, 2573-2577 (2005). https://doi.org/10.1021/nl052024f
  14. L. Gao, K. Fan, and X. Yan, Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications, Theranostics, 7, 3207-3227 (2017). https://doi.org/10.7150/thno.19738
  15. H. Y. Shin, B. Kim, S. Cho, J. Lee, H. B. Na, and M. I. Kim, Visual determination of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of magnetic nanoparticles functionalized with a poly (ethylene glycol) derivative, Microchim. Acta., 184, 2115-2122 (2017). https://doi.org/10.1007/s00604-017-2198-z
  16. W. Lu, J. Zhang, N. Li, Z. You, Z. Feng, V. Natarajan, J. Chen, and J. Zhan, $Co_3O_4$@$\beta$-cyclodextrin with synergistic peroxidase-mimicking performance as a signal magnification approach for colorimetric determination of ascorbic acid, Sens. Actuators B: Chem., 303, 127106 (2020). https://doi.org/10.1016/j.snb.2019.127106
  17. C. Fan, J. Liu, H. Zhao, L. Li, M. Liu, J. Gao, and L. Ma, Molecular imprinting on PtPd nanoflowers for selective recognition and determination of hydrogen peroxide and glucose, RSC Adv., 9, 33678-33683 (2019). https://doi.org/10.1039/C9RA05677G
  18. W. Cao, J. Lin, F. Muhammad, Q. Wang, X. Wang, Z. Lou, and H. Wei, Porous ruthenium selenide nanoparticle as a peroxidase mimic for glucose bioassay, J. Anal. Test., 3, 253-259 (2019). https://doi.org/10.1007/s41664-019-00104-0
  19. C. Song, W. Ding, W. Zhao, H. Liu, J. Wang, Y. Yao, and C. Yao, High peroxidase-like activity realized by facile synthesis of $FeS_2$ nanoparticles for sensitive colorimetric detection of $H_2O_2$ and glutathione, Biosens. Bioelectron., 151, 111983 (2020). https://doi.org/10.1016/j.bios.2019.111983
  20. L. Hu, H. Liao, L. Feng, M. Wang, and W. Fu, Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity, Anal. Chem., 90, 6247-6252 (2018). https://doi.org/10.1021/acs.analchem.8b00885
  21. W. Li, J. Wang, J. Zhu, and Y. Zheng, $Co_3O_4$ nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione, J. Mater. Chem. B, 6, 6858-6864 (2018). https://doi.org/10.1039/C8TB01948G
  22. C. K. Kim, T. Kim, I.-Y. Choi, M. Soh, D. Kim, Y.-J. Kim, H. Jang, H.-S. Yang, J. Y. Kim, H.-K. Park, S. P. Park, S. Park, T. Yu, B.-W. Yoon, S.-H. Lee, and T. Hyeon, Ceria nanoparticles that can protect against ischemic stroke, Angew. Chem. Int. Ed., 51, 11039-11043 (2012). https://doi.org/10.1002/anie.201203780
  23. R. Singh and S. Singh, Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia, Colloids Surf. B, 175, 625-635 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.042
  24. M. Y. Kim and J. Kim, Chitosan microgels embedded with catalase nanozyme-loaded mesocellular silica foam for glucose-responsive drug delivery, ACS Biomater. Sci. Eng., 3, 572-578 (2017). https://doi.org/10.1021/acsbiomaterials.6b00716
  25. S. Kim, M. Kim, S. Jung, K. Kwon, J. Park, S. Kim, I. Kwon, and G. Tae, Co-delivery of therapeutic protein and catalase-mimic nanoparticle using a biocompatible nanocarrier for enhanced therapeutic effect, J. Control. Release, 309, 181-189 (2019). https://doi.org/10.1016/j.jconrel.2019.07.038
  26. D. Sun, X. Pang, Y. Cheng, J. Ming, S. Xiang, C. Zhang, P. Lv, C. Chu, X. Chen, and G. Liu, Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection, ACS Nano, 14, 2063-2076 (2020). https://doi.org/10.1021/acsnano.9b08667
  27. M. Chen, Z. Wang, J. Shu, X. Jiang, W. Wang, Z. Shi, and Y. Lin, Mimicking a natural enzyme system: Cytochrome c oxidase-like activity of $Cu_2O$ nanoparticles by receiving electrons from cytochromec, Inorg. Chem., 56, 9400-9403 (2017). https://doi.org/10.1021/acs.inorgchem.7b01393
  28. S. He, L. Yang, X. Lin, L. Chen, H. Peng, H. Deng, X. Xia, and W. Chen, Heparin-platinum nanozymes with enhanced oxidase-like activity for the colorimetric sensing of isoniazid, Talanta, 211, 120707 (2020). https://doi.org/10.1016/j.talanta.2019.120707
  29. X. Xu, L. Wang, X. Zou, S. Wu, J. Pan, X. Li, and X. Niu, Highly sensitive colorimetric detection of arsenite based on reassembly- induced oxidase-mimicking activity inhibition of dithiothreitol-capped Pd nanozyme, Sens. Actuators B: Chem., 298, 126876 (2019). https://doi.org/10.1016/j.snb.2019.126876
  30. H. Cheng, S. Lin, F. Muhammad, Y. Lin, and H. Wei, Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays, ACS Sens., 1, 1336-1343 (2016). https://doi.org/10.1021/acssensors.6b00500
  31. H. Yang, X. Wu, L. Su, Y. Ma, N.J. Graham, and W. Yu, The F-N-C oxidase-like nanozyme used for catalytic oxidation of NOM in surface water, Water Res., 171, 115491 (2020). https://doi.org/10.1016/j.watres.2020.115491
  32. S. Bhagat, N. S. Vallabani, V. Shutthanandan, M. Bowden, A. S. Karakoti, and S. Singh, Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon, J. Colloid Interface Sci., 513, 831-842 (2018). https://doi.org/10.1016/j.jcis.2017.11.064
  33. M. Gharib, A. Kornowski, H. Noei, W. J. Parak, and I. Chakraborty, Protein-protected porous bimetallic AgPt nanoparticles with pH-switchable peroxidase/catalase-mimicking activity, ACS Mater. Lett., 1, 310-319 (2019). https://doi.org/10.1021/acsmaterialslett.9b00164
  34. X. Zhang, G. Han, R. Zhang, Z. Huang, H. Shen, P. Su, J. Song, and Y. Yang, $Co_2V_2O_7$ particles with intrinsic multienzyme mimetic activities as an effective bioplatform for ultrasensitive fluorometric and colorimetric biosensing, ACS Appl. Bio Mater., 3, 1469-1480 (2020). https://doi.org/10.1021/acsabm.9b01107
  35. X. Hu, F. Li, F. Xia, X. Guo, N. Wang, L. Liang, B. Yang, K. Fan, X. Yan, and D. Ling, Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy, J. Am. Chem. Soc., 142, 1636-1644 (2019). https://doi.org/10.1021/jacs.9b13586
  36. S. Kang, Y. Gil, D. Min, and H. Jang, Nonrecurring circuit nanozymatic enhancement of hypoxic pancreatic cancer phototherapy using speckled Ru-Te hollow nanorods, ACS Nano, 14, 4383-4394 (2020). https://doi.org/10.1021/acsnano.9b09974
  37. S. J. Im, S. Y. Lee, and Y. I. Park, Recent trends in photodynamic therapy using upconversion nanoparticles, Appl. Chem. Eng., 29, 138-146 (2018). https://doi.org/10.14478/ACE.2018.1025