DOI QR코드

DOI QR Code

Ghosted Illustration Rendering using Depth-based Blending Techniques

깊이 기반 블렌딩 기술을 활용한 고스트 일러스트레이션 렌더링

  • Kim, Dongjoon (Dept. of Computer Science and Engineering, Seoul National University) ;
  • Shin, Yeong-Gil (Dept. of Computer Science and Engineering, Seoul National University)
  • Received : 2020.06.05
  • Accepted : 2020.06.25
  • Published : 2020.07.01

Abstract

Ghosted illustration is an effective tool to simultaneously visualize interior and exterior structures while preserving clear shape cues. We propose a novel framework that combines 3D blending technique, which uses depth information of the target structure, with the conventional ghosted illustration framework. This combination facilitates natural blending effects tailored to the needs of ghosted illustration. Furthermore, we present how common manipulation techniques (e.g., masking) and illustrative rendering effects (e.g., silhouette mapping) can be integrated into the proposed framework to preserve both clear shape cues and depth cues. For the compositing techniques, we show and discuss the visual results obtained from various combinations of them. This demonstrates that the proposed framework can be an effective tool for ghost illustration.

고스트 일러스트레이션은 모델의 명확한 형상에 대한 기하학적 정보를 잃지 않으면서 내/외부 구조를 동시에 가시화하는 효과적인 도구이다. 우리는 고스트 일러스트레이션의 전통적인 접근 방식에 모델의 깊이 정보를 활용하는 3차원 블렌딩 기술을 조합하는 새로운 프레임워크를 제안한다. 이 조합은 고스트 일러스트레이션의 요구 사항에 맞는 자연스러운 혼합 효과를 용이하게 한다. 또한, 일반적인 조작 기법(예. 마스킹)과 일러스트 렌더링 효과를 제안 프레임워크에 통합하여 명확한 형상에 대한 기하학적 정보와 깊이 정보를 동시에 제공하는 방법을 기술한다. 제안 기술 및 기존 기술에 대하여, 우리는 이들을 다양하게 조합하여 얻은 시각적 결과를 보이고 그 결과에 대해 논의한다. 이를 통해, 제안 프레임워크가 고스트 일러스트레이션을 위한 효과적인 툴이 될 수 있음을 보인다.

Keywords

References

  1. S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Groller, "Illustrative context-preserving exploration of volume data," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 6, pp. 1559-1569, 2006. https://doi.org/10.1109/TVCG.2006.96
  2. I. Viola, A. Kanitsar, and M. E. Groller, "Importance-driven feature enhancement in volume visualization," IEEE Transactions on Visualization and Computer Graphics, vol. 11, no. 4, pp. 408-418, 2005. https://doi.org/10.1109/TVCG.2005.62
  3. P. Rautek, S. Bruckner, and M. E. Groller, "Interaction-dependent semantics for illustrative volume rendering," in Computer Graphics Forum, vol. 27, no. 3. Wiley Online Library, 2008, pp. 847-854.
  4. S. Bruckner, P. Rautek, I. Viola, M. Roberts, M. C. Sousa, and M. E. Groller, "Hybrid visibility compositing and masking for illustrative rendering," Computers & Graphics, vol. 34, no. 4, pp. 361-369, 2010. https://doi.org/10.1016/j.cag.2010.04.003
  5. L. Wang, Y. Zhao, K. Mueller, and A. Kaufman, "The magic volume lens: An interactive focus+ context technique for volume rendering," in VIS 05. IEEE Visualization, 2005. IEEE, 2005, pp. 367-374.
  6. J. Kruger, J. Schneider, and R. Westermann, "Clearview: An interactive context preserving hotspot visualization technique," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 941-948, 2006. https://doi.org/10.1109/TVCG.2006.124
  7. M. McGuire and L. Bavoil, "Weighted blended order-independent transparency," Journal of Computer Graphics Techniques, 2013.
  8. D.-J. Kim, B. Kim, J. Lee, J. Shin, K. W. Kim, and Y.-G. Shin, "High-quality slab-based intermixing method for fusion rendering of multiple medical objects," Computer methods and programs in biomedicine, vol. 123, pp. 27-42, 2016. https://doi.org/10.1016/j.cmpb.2015.09.009
  9. T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and T. Strothotte, "A developer's guide to silhouette algorithms for polygonal models," IEEE Computer Graphics and Applications, vol. 23, no. 4, pp. 28-37, 2003. https://doi.org/10.1109/MCG.2003.1210862
  10. M. Hummel, C. Garth, B. Hamann, H. Hagen, and K. I. Joy, "Iris: Illustrative rendering for integral surfaces," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1319-1328, 2010. https://doi.org/10.1109/TVCG.2010.173
  11. D. Kalkofen, E. Mendez, and D. Schmalstieg, "Interactive focus and context visualization for augmented reality," in 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE, 2007, pp. 191-201.
  12. D. Kalkofen, E. Veas, S. Zollmann, M. Steinberger, and D. Schmalstieg, "Adaptive ghosted views for augmented reality," in 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2013, pp. 1-9.
  13. T. Saito and T. Takahashi, "Comprehensible rendering of 3-d shapes," in Proceedings of the 17th annual conference on Computer graphics and interactive techniques, 1990, pp. 197-206.
  14. L. Bavoil, S. P. Callahan, A. Lefohn, J. L. Comba, and C. T. Silva, "Multi-fragment effects on the gpu using the k-buffer," in Proceedings of the 2007 symposium on Interactive 3D graphics and games, 2007, pp. 97-104.
  15. A.-A. Vasilakis, G. Papaioannou, and I. Fudos, "$k^+$-buffer: An efficient, memory-friendly and dynamic k-buffer framework," IEEE transactions on visualization and computer graphics, vol. 21, no. 6, pp. 688-700, 2015. https://doi.org/10.1109/TVCG.2015.2417581
  16. J. Kruger and R. Westermann, "Acceleration techniques for gpu-based volume rendering," in IEEE Visualization, 2003. VIS 2003. IEEE, 2003, pp. 287-292.