참고문헌
- Baldi, P. (2014), "A note on standard completeness for some extensions of uninorm logic", Soft Computing, 18, pp. 1463-1470. https://doi.org/10.1007/s00500-014-1265-1
- Ciabattoni, A., Esteva, F., and Godo, L. (2002), "T-norm based logics with n-contraction", Neural Network World, 12, pp. 441-453.
- Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic, 45, pp. 673-704. https://doi.org/10.1007/s00153-006-0011-5
- Cintula, P., Horcik, R., and Noguera, C. (2013), "Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties", Review of Symbol. Logic, 12, pp. 394-423.
- Cintula, P., Horcik, R., and Noguera, C. (2015), "The quest for the basic fuzzy logic", Mathematical Fuzzy Logic, P. Hajek (Ed.), Springer.
- Cintula, P. and Noguera, C. (2011), A general framework for mathematical fuzzy logic, Handbook of Mathematical Fuzzy Logic, vol 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 103-207.
- Esteva. F. and Godo. L. (2001), "Monoidal t-norm based logic: towards a logic for left-continuous t-norms", 124, pp. 271-288. https://doi.org/10.1016/S0165-0114(01)00098-7
- Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. (2007), Residuated lattices: an algebraic glimpse at substructural logics, Amsterdam, Elsevier.
- Hajek, P. (1998), Metamathematics of Fuzzy Logic, Amsterdam, Kluwer.
- Horcik, R. (2011), Algebraic semantics: semilinear FL-algebras, Handbook of Mathematical Fuzzy Logic, vol 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 283-353.
- Hori, R., Ono, H., and Schellinx, H. (1994), "Extending intuitionistic linear logic with knotted structural rules", Studia Logica, 35, pp. 219-2424. https://doi.org/10.1007/BF02282484
- Jenei, S. and Montagna, F. (2002), "A Proof of Standard completeness for Esteva and Godo's Logic MTL", Studia Logica, 70, pp. 183-192. https://doi.org/10.1023/A:1015122331293
- Metcalfe, G., and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864. https://doi.org/10.2178/jsl/1191333844
- Wang, S. (2012), "Uninorm logic with the n-potency axiom", Fuzzy Sets and Systems, 205, pp. 116-126. https://doi.org/10.1016/j.fss.2012.04.017
- Yang, E. (2015), "Weakening-free, non-associative fuzzy logics: Micanorm-based logics", Fuzzy Sets and Systems, 276, pp. 43-58. https://doi.org/10.1016/j.fss.2014.11.020
- Yang, E. (2016), "Basic substructural core fuzzy logics and their extensions: Mianorm-based logics", Fuzzy Sets and Systems, 301, pp. 1-18. https://doi.org/10.1016/j.fss.2015.09.007
- Yang, E. (2017a), "Involutive basic substructural core fuzzy logics: Involutive mianorm-based logic", Fuzzy Sets and Systems, 320, pp. 1-16. https://doi.org/10.1016/j.fss.2017.03.013
- Yang, E. (2017b), "Some axiomatic extensions of the involutive mianorm logic IMIAL", Korean Journal of Logic, 20/3, pp. 313-333. https://doi.org/10.22860/KAFL.2017.20.3.313
- Yang, E. (2019), "Mianorm-based logics with n-contraction and n-mingle axioms", Journal of Intelligent and Fuzzy systems, 37, pp. 7895-7907. https://doi.org/10.3233/JIFS-190150