좌 우, n-멱등 공리를 갖는 미아놈 논리

Mianorm-based Logics with right and left n-potency axioms

  • 양은석 (전북대학교 철학과, 비판적사고와논술연구소)
  • Yang, Eunsuk (Department of Philosophy & Institute of Critical Thinking and Writing, Jeonbuk National University)
  • 투고 : 2019.11.05
  • 심사 : 2020.02.20
  • 발행 : 2020.02.29

초록

이 글에서 우리는 좌, 우 n-멱등 공리를 갖는 미아놈에 기반한 논리를 다룬다. 이를 위하여 먼저 미아놈에 바탕을 둔 좌, 우 n-멱등 공리를 갖는 논리 체계 PrnMIAL, PlnMIAL을 소개한다. 각 체계에 상응하는 대수적 구조를 정의한 후, 이들 체계가 대수적으로 완전하다는 것을 보인다. 다음으로, 이 논리 체계들이 표준적으로 완전하다는 것 즉 단위 실수 [0, 1에서 완전하다는 것을 제네이-몬테그나 방식의 구성을 사용하여 보인다. 마지막으로 이를 고정점을 갖는 누승적 확장에 대한 연구로 확대한다.

This paper deals with mianorm-based logics with right and left n-potency axioms and their fixpointed involutive extensions. For this, first, right and left n-potent logic systems based on mianorms, their corresponding algebraic structures, and their algebraic completeness results are discussed. Next, completeness with respect to algebras whose lattice reduct is [0, 1], known as standard completeness, is established for these systems via Yang's construction in the style of Jenei-Montagna. Finally, further standard completeness results are introduced for their fixpointed involutive extensions.

키워드

참고문헌

  1. Baldi, P. (2014), "A note on standard completeness for some extensions of uninorm logic", Soft Computing, 18, pp. 1463-1470. https://doi.org/10.1007/s00500-014-1265-1
  2. Ciabattoni, A., Esteva, F., and Godo, L. (2002), "T-norm based logics with n-contraction", Neural Network World, 12, pp. 441-453.
  3. Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic, 45, pp. 673-704. https://doi.org/10.1007/s00153-006-0011-5
  4. Cintula, P., Horcik, R., and Noguera, C. (2013), "Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties", Review of Symbol. Logic, 12, pp. 394-423.
  5. Cintula, P., Horcik, R., and Noguera, C. (2015), "The quest for the basic fuzzy logic", Mathematical Fuzzy Logic, P. Hajek (Ed.), Springer.
  6. Cintula, P. and Noguera, C. (2011), A general framework for mathematical fuzzy logic, Handbook of Mathematical Fuzzy Logic, vol 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 103-207.
  7. Esteva. F. and Godo. L. (2001), "Monoidal t-norm based logic: towards a logic for left-continuous t-norms", 124, pp. 271-288. https://doi.org/10.1016/S0165-0114(01)00098-7
  8. Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. (2007), Residuated lattices: an algebraic glimpse at substructural logics, Amsterdam, Elsevier.
  9. Hajek, P. (1998), Metamathematics of Fuzzy Logic, Amsterdam, Kluwer.
  10. Horcik, R. (2011), Algebraic semantics: semilinear FL-algebras, Handbook of Mathematical Fuzzy Logic, vol 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 283-353.
  11. Hori, R., Ono, H., and Schellinx, H. (1994), "Extending intuitionistic linear logic with knotted structural rules", Studia Logica, 35, pp. 219-2424. https://doi.org/10.1007/BF02282484
  12. Jenei, S. and Montagna, F. (2002), "A Proof of Standard completeness for Esteva and Godo's Logic MTL", Studia Logica, 70, pp. 183-192. https://doi.org/10.1023/A:1015122331293
  13. Metcalfe, G., and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864. https://doi.org/10.2178/jsl/1191333844
  14. Wang, S. (2012), "Uninorm logic with the n-potency axiom", Fuzzy Sets and Systems, 205, pp. 116-126. https://doi.org/10.1016/j.fss.2012.04.017
  15. Yang, E. (2015), "Weakening-free, non-associative fuzzy logics: Micanorm-based logics", Fuzzy Sets and Systems, 276, pp. 43-58. https://doi.org/10.1016/j.fss.2014.11.020
  16. Yang, E. (2016), "Basic substructural core fuzzy logics and their extensions: Mianorm-based logics", Fuzzy Sets and Systems, 301, pp. 1-18. https://doi.org/10.1016/j.fss.2015.09.007
  17. Yang, E. (2017a), "Involutive basic substructural core fuzzy logics: Involutive mianorm-based logic", Fuzzy Sets and Systems, 320, pp. 1-16. https://doi.org/10.1016/j.fss.2017.03.013
  18. Yang, E. (2017b), "Some axiomatic extensions of the involutive mianorm logic IMIAL", Korean Journal of Logic, 20/3, pp. 313-333. https://doi.org/10.22860/KAFL.2017.20.3.313
  19. Yang, E. (2019), "Mianorm-based logics with n-contraction and n-mingle axioms", Journal of Intelligent and Fuzzy systems, 37, pp. 7895-7907. https://doi.org/10.3233/JIFS-190150