References
- Aue, A., Horvath, L., and Pellatt, D. F. (2017). Functional generalized autoregressive conditional heteroskedasticity, Journal of Time Series Analysis, 38, 3-21. https://doi.org/10.1111/jtsa.12192
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
- Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model, Review of Economics and Statistics, 72, 498-505. https://doi.org/10.2307/2109358
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom in flation, Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773
- Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH, Econometric Theory, 11, 122-150. https://doi.org/10.1017/S0266466600009063
- Engle, R. (2002). Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models, Journal of Business & Economic Statistics, 20, 339-350. https://doi.org/10.1198/073500102288618487
- Hansen, P. R. and Lunde, A. (2006). Realized variance and market microstructure noise, Journal of Business & Economic Statistics, 24, 127-161. https://doi.org/10.1198/073500106000000071
- Hormann, S. and Kokoszka, P. (2012). Functional Time Series. In Handbook of Statistics, (Vol. 30, pp. 157-186), Elsevier.
- Hormann, S., Horvath, L., and Reeder, R. (2013). A functional version of the ARCH model, Econometric Theory, 29, 267-288. https://doi.org/10.1017/S0266466612000345
- Hwang, S. Y., Choi, M. S., and Do, J. D. (2009). Assessments for MGARCH models using back-testing: Case study, Korean Journal of Applied Statistics, 22, 261-270. https://doi.org/10.5351/KJAS.2009.22.2.261
- Jin, M. K., Yoon, J. E., and Hwang, S. Y. (2017). Choice of frequency via principal component in highfrequency multivariate volatility models, The Korean Journal of Applied Statistics, 30, 747-757. https://doi.org/10.5351/KJAS.2017.30.5.747
- Lee, G. J. and Hwang, S. Y. (2017). Multivariate volatility for high-frequency financial series, The Korean Journal of Applied Statistics, 30, 169-180. https://doi.org/10.5351/KJAS.2017.30.1.169
- Tsay, R. S. (2010). Analysis of Financial Time Series (3rd ed), John Wiley & Sons, New York.
- Yoon, J. E., Kim, J. M., and Hwang, S. Y. (2017). Functional ARCH (fARCH) for high-frequency time series: illustration, Korean Journal of Applied Statistics, 30, 983-991. https://doi.org/10.5351/KJAS.2017.30.6.983
- Yoon, J. E., Kim, J. M., and Hwang, S. Y. (2018). The fGARCH (1, 1) as a functional volatility measure of ultra high frequency time series, Korean Journal of Applied Statistics, 31, 667-675. https://doi.org/10.5351/KJAS.2018.31.5.667