DOI QR코드

DOI QR Code

Altitudinal diversity and distribution of butterflies inhabiting Mt. Jirisan, South Korea

지리산 나비의 고도에 따른 다양성과 서식 분포

  • Lee, Sanghun (Team of Climate Change Research, National Institute of Ecology) ;
  • Ahn, Nahyun (Team of Climate Change Research, National Institute of Ecology) ;
  • An, Jeong-Seop (Department of Knowledge-based Culture, National Institute of Ecology)
  • 이상훈 (국립생태원 기후변화연구팀) ;
  • 안나현 (국립생태원 기후변화연구팀) ;
  • 안정섭 (국립생태원 지식문화부)
  • Received : 2020.08.28
  • Accepted : 2020.10.12
  • Published : 2020.12.31

Abstract

This study surveyed the altitudinal diversity and distribution of butterflies inhabiting Mt. Jirisan. Field surveys were conducted thrice (May, June, and July) using a line transect method along four routes in 2015. During the survey, a total of five families, 58 species, and 769 individuals were collected. Of the species collected, the majority belonged to the family Nymphalidae (28 species), followed by Hesperiidae (nine species), Pieridae (eight species), Lycaenidae (seven species), and Papilionidae (six species). As for the individuals, Pieridae accounted for the largest number (333 individuals), followed by Nymphalidae (309 individuals), Lycaenidae (63 individuals), Hesperiidae (33 individuals), and Papilionidae (31 individuals). A cluster analysis performed on the butterfly species distinguished three altitude zones. The butterflies showed different ecological traits in each of the altitude zones. Analysis of the altitudes of the habitats of eight dominant species revealed that each species inhabited a particular altitude. This study confirmed the hypothesis that continuous monitoring will identify changes in the altitudinal distribution and diversity of butterflies on Mt. Jirisan in response to climate change.

이 연구에서 지리산의 낮은 고도에서부터 높은 고도까지 나비의 종다양성, 고도에 따른 생태적 특성, 우점종의 고도 분포에 대해 알아보았다. 나비는 총 5과 58종 769개체의 나비를 확인하였다. 낮은 고도와 높은 고도에서 종다양성은 높게 나타나고 있었다. 군집분석을 통해 3개(낮은 고도, 중간 고도, 높은 고도)로 구분하였으며, 낮은 고도에 비해 높은 고도에서는 서식지 범위가 좁은 종의 비율이 높았으며, 단식성 나비의 비율이 높게 나타나고, 다화성 나비의 비율이 높게 나타났다. 배추흰나비(Pieris rapae)는 600m 이하의 고도에서 서식하고, 큰흰줄표범나비(Argynnis ruslana), 먹그늘나비(Lethe diana)는 900 m 이상의 고도에 서식하며, 특히 큰흰줄표범나비(Argynnis ruslana)는 1,000m 이상에서 서식하고 있었다. 본 연구를 바탕으로 지속적인 모니터링 실시를 통해 지리산에서 기후변화에 따른 나비의 고도 분포 변화 및 다양성 변화 양상을 확인할 수 있을 것으로 생각된다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립생태원의 지원을 받아 수행하였습니다(NIE-C-2020-21).

References

  1. Altermatt, F. 2010. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B-Biol. Sci. 277:1281-1287. https://doi.org/10.1098/rspb.2009.1910
  2. Cerrato C, E Rocchia, M Brunetti, R Bionda, B Bassano, A Provenzale, S Bonelli and R Viterbi. 2019. Butterfly distribution along altitudinal gradients temporal changes over a short time period. Nat. Conserv. 34:91-118. https://doi.org/10.3897/natureconservation.34.30728
  3. Choi SW and JS An. 2010. Altitudinal distribution of moths (Lepidoptera) in Mt. Jirisan National Park, South Korea, Eur. J. Entomol. 107:229-245. https://doi.org/10.14411/eje.2010.031
  4. Choi SW and JS An. 2015. Pattern of change of the local butterfly community in a rural area of Southwestern part of Korea. Korean J. Environ. Biol. 33:53-62. https://doi.org/10.11626/KJEB.2015.33.1.053
  5. Choi SW, DH Nho, SS Kim and KJ Hong. 2016. Spatio-temporal moth diversity (Insecta: Lepidoptera) of Mt. Baegun-san, Gwangyang, Jeonnam. Korean J. Ecol. Environ. 49:62-66. https://doi.org/10.11614/KSL.2016.49.1.062
  6. Elzinga CL, DW Salzer and JW Willoughby. 2001. Monitoring Plant and Animal Populations. Blackwell Science. Hoboken, NJ.
  7. Fiedler K and E Beck. 2008. Investigating gradients in ecosystem analysis. pp. 49-54. In: Gradients in a Tropical Mountain Ecosystem of Ecuador. Springer. Berlin, Germany.
  8. Franco AMA, JK Hill, C Kitschke, YC Collingham, DB Roy, R Fox, B Huntley and CD Thomas. 2006. Impacts of climate warming and habitat loss on extinctions at species' low-latitude range boundaries. Glob. Change Biol. 12:1545-1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x
  9. Hill JK, CD Thomas, R Fox, MG Telfer, SG Willis, J Asher and B Huntley. 2002. Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc. R. Soc. B-Biol. Sci. 269:2163-2171. https://doi.org/10.1098/rspb.2002.2134
  10. Kim DS, HB Yi, YJ Kwon and MS Woo. 2007. The butterfly community dynamics at Mt. Midong, Cheongwon-gun, Chungcheongbukdo, Korea. Korea J. Environ. Ecol. 25:319-325.
  11. Kim DS, KS Oh, SJ Park, SS Choi and SH Lee. 2015. Comparison of butterfly communities between Guryongryeong and Gojigkyeong of the Baekdudaegan Mountain Range and the changes in their distribution. Korean J. Appl. Entomol. 54:233-245. https://doi.org/10.5656/KSAE.2015.06.0.008
  12. Kim DS, SJ Park, DS Kim, YB Cho, YD Lee, NH Ahn, KG Kim, HY Seo and JY Cha. 2014. Monitoring of the butterfly communities inhabited of Mt. Hallasan, Jeju island, Korea. Korean J. Environ. Ecol. 28:697-704. https://doi.org/10.13047/KJEE.2014.28.6.697
  13. Kim SS and YH Seo. 2012. Life Histories of Korean Butterflies. Sakyejul. Paju, Korea.
  14. Kim SS, CM Lee and TS Kwon. 2011. The butterfly community in Is. Guleopdo, Korea and the dominance of the endangered species Argynnis nerippe. Korean J. Appl. Entomol. 50:115-123. https://doi.org/10.5656/KSAE.2011.04.0.16
  15. Kim SS, HC Park and MA Kim. 1999. Monitoring the distribution and density of butterflies in Mt. Chugeum-san. J. Lepid. Soc. Kor. 12:7-15.
  16. Kim TG, YH Cho, KH Song, YJ Park and JG Oh. 2016. Assessing the influence of topographic factors on the distribution of Aporia crataegi (Lepidoptera: Pieridae) in Northeast Asia using a MaxEnt modeling approach. Korean J. Ecol. Environ. 49:142-146. https://doi.org/10.11614/KSL.2016.49.2.142
  17. Kim YS. 2002. Illustrated Book of Korean Butterflies in Color. Kyohaksa. Seoul.
  18. Konvicka M, CV Mihaly, L Rakosy, J Benes and T Schmitt. 2014. Survival of cold-adapted species in isolated mountains: the population genetics of the Sudeten ringlet, Erebia sudetica sudetica, in the Jesenik Mts, Czech Republic. J. Insect Conserv. 18:153-161. https://doi.org/10.1007/s10841-014-9621-0
  19. Konvicka M, J Benes, O Cizek, T Kuras and I Kleckova. 2016. Has the currently warming climate affected populations of the mountain ringlet butterfly, Erebia epiphron (Lepidoptera: Nymphalidae), in low-elevation mountains? Eur. J. Entomol. 113:295-301. https://doi.org/10.14411/eje.2016.036
  20. Korner C. 2007. The use of altitude in ecological research. Trends Ecol. Evol. 22:569-574. https://doi.org/10.1016/j.tree.2007.09.006
  21. Kremen C. 1994. Biological inventory using target taxa: A case study of the butterflies of Madagascar. Ecol. Appl. 4:407-422. https://doi.org/10.2307/1941946
  22. Kwon TS, BK Byun, SH Kang, SS Kim and BW Lee. 2008. Analysis on changes, and problems in phenology of butterflies in Gwangneung forest. Korean J. Appl. Entomol. 47:209-216. https://doi.org/10.5656/KSAE.2008.47.3.209
  23. Kwon TS, SS Kim, JH Chun, BK Byun, JH Lim and JH Shin. 2010. Changes in butterfly abundance in response to global warming and reforestation. Environ. Entomol. 39:337-345. https://doi.org/10.1603/EN09184
  24. Kwon TS, SS Kim and CM Lee. 2013. Local change of butterfly species in response to global warming and reforestation in Korea. Zool. Stud. 52:47. https://doi.org/10.1186/1810-522X-52-47
  25. Maicher V, S Safian, M Murkwe, S Delabye, L Przybylowicz, P Potocky, IN Kobe, S Janecek, JEJ Mertens, EB Fokam, T Pyrcz, J Dolezal, J Altman, D Horak, K Fiedler and R Tropek. 2019. Seasonal shifts of biodiversity patterns and species' elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J. Biogeogr. 47:342-354.
  26. Matter SF, J Roland, N Keyghobadi and K Sabourin. 2003. The effects of isolation, habitat area and resources on the abundance, density and movement of the butterfly Parnassius smintheus. Am. Midl. Nat. 150:26-36. https://doi.org/10.1674/0003-0031(2003)150[0026:TEOIHA]2.0.CO;2
  27. McCune B and MJ Mefford. 1999. PC-ORD: multivariate analysis of ecological data; Version 4 for Windows [User's Guide]. MjM software design. Gleneden Beach, OR.
  28. Mihoci I, V Hrsak, M Kucinic, VM Stankovic, A Delic and N Tvrtkovic. 2011. Butterfly diversity and biogeography on the Croatian karst mountain Biokovo: Vertical distribution and preference for altitude and aspect? Eur. J. Entomol. 108:623-634. https://doi.org/10.14411/eje.2011.081
  29. Molina-Martinez A, JL Leon-Cortes, HM Regan, OT Lewis, D Navarrete, U Caballero and A Luis-Martinez. 2016. Changes in butterfly distributions and species assemblages on a Neotropical mountain range in response to global warming and anthropogenic land use. Divers. Distrib. 22:1085-1098. https://doi.org/10.1111/ddi.12473
  30. Parmesan C, N Ryrholm, C Stefanescu, JK Hill, CD Thomas, H Descimon, B Huntley, L Kaila, J Kullberg, T Tammaru, WJ Tennent, JA Thomas and M Warren. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579-583. https://doi.org/10.1038/21181
  31. Parmesan C and G Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-42. https://doi.org/10.1038/nature01286
  32. Pianka ER. 1994. Evolutionary Ecology. Harper Collins. New York.
  33. Pollard E and TJ Yates. 1994. Monitoring Butterflies for Ecology and Conservation. Conservation Biology Series. Chapman & Hall. London.
  34. Schweiger O, J Settele, O Kudrna, S Klotz and I Kuhn. 2008. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472-3479. https://doi.org/10.1890/07-1748.1
  35. Seaby RM and PA Henderson. 2006. Species diversity and richness version 4. Pisces Conservation Ltd. Lymington, England.
  36. Shin YH. 1989. Colored Atlas of Butterflies in Korea. Academy Publishing. Seoul.
  37. Smith TM and RL Smith. 2009. Elements of Ecology (7th edition). Benjamin Cummings. Boston, MA.
  38. Storch D, M Konvicka, J Benes, J Martinkova and KJ Gaston. 2003. Distribution patterns in butterflies and birds of the Czech Republic: separating effects of habitat and geographical position. J. Biogeogr. 30:1195-1205. https://doi.org/10.1046/j.1365-2699.2003.00917.x
  39. Walther GR, E Post, P Convey, A Menzel, C Parmesan, TJC Beebee, JM Fromentin, O Hoegh-Guldberg and F Bairlein. 2002. Ecological responses to recent climate change. Nature 416:389-395. https://doi.org/10.1038/416389a
  40. Warren MS, JK Hill, JA Thomas, J Asher, R Fox, B Huntley, DB Roy, MG Telfer, S Jeffcoate, P Harding, G Jeffcoate, SG Willis, JN Greatorex-Davies, D Moss and CD Thomas. 2001. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65-69. https://doi.org/10.1038/35102054
  41. Zografou K, A Grill, RJ Wilson, JM Halley, GC Adamidis and V Kati. 2019. Butterfly phenology in Mediterranean mountains using space-for-time substitution. Ecol. Evol. 10:928-939.