• Title/Summary/Keyword: elevation

Search Result 5,073, Processing Time 0.03 seconds

Geostatistical Integration of Different Sources of Elevation and its Effect on Landslide Hazard Mapping

  • Park, No-Wook;Kyriakidis, Phaedon C.
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.453-462
    • /
    • 2008
  • The objective of this paper is to compare the prediction performances of different landslide hazard maps based on topographic data stemming from different sources of elevation. The geostatistical framework of kriging, which can properly integrate spatial data with different accuracy, is applied for generating more reliable elevation estimates from both sparse elevation spot heights and exhaustive ASTER-based elevation values. A case study from Boeun, Korea illustrates that the integration of elevation and slope maps derived from different data yielded different prediction performances for landslide hazard mapping. The landslide hazard map constructed by using the elevation and the associated slope maps based on geostatistical integration of spot heights and ASTER-based elevation resulted in the best prediction performance. Landslide hazard mapping using elevation and slope maps derived from the interpolation of only sparse spot heights showed the worst prediction performance.

Effects of Passive Scapular Postural Correction and Active Scapular Posterior Tilt Strategies on Peri-scapular Muscle Activation (수동적 어깨뼈 자세 교정 전략과 능동적 어깨뼈 뒤쪽 기울임 전략이 어깨뼈 주변근육 활성도에 미치는 영향)

  • Kang, Min-Hyeok
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.215-222
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the effects of passive scapular upward rotation and posterior tilt and active scapular posterior tilt on the muscle activity of the upper trapezius (UT), lower trapezius (LT), and serratus anterior (SA). Methods: Fifteen healthy subjects performed general arm elevation, arm elevation with passive scapular upward rotation and posterior tilt, and arm elevation with active scapular posterior tilt. For active scapular posterior tilt, the subjects were trained in this movement using visual biofeedback and a motion sensor. During each arm elevation condition, electromyography was used to measure the muscle activity of the UT, LT, and SA. The measured data were analyzed using a one-way repeated ANOVA. Results: LT muscle activity was significantly increased during arm elevation with active scapular posterior tilt compared to both general arm elevation and arm elevation with passive scapular upward rotation and posterior tilt (p < 0.05). SA muscle activity was greater during arm elevation with passive scapular upward rotation and posterior tilt than during general arm elevation (p < 0.05). There was no significant change in UT muscle activity among the tested arm elevation conditions (p > 0.05). Conclusion: Performing arm elevation with active scapular posterior tilt and performing arm elevation with passive scapular upward rotation and posterior tilt may be useful strategies for increasing muscle activation of the LT and SA, respectively.

Extraction and Matching of Elevation Moment of Inertia for Elevation Map-based Localization of an Outdoor Mobile Robot (실외 이동로봇의 고도지도 기반 위치인식을 위한 고도관성모멘트 추출 및 정합)

  • Kwon, Tae-Bum;Song, Jae-Bok;Kang, Sin-Cheon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.203-210
    • /
    • 2009
  • The problem of outdoor localization can be practically solved by GPS. However, GPS is not perfect and some areas of outdoor navigation should consider other solutions. This research deals with outdoor localization using an elevation map without GPS. This paper proposes a novel feature, elevation moment of inertia (EMOI), which represents the distribution of elevation as a function of distance from a robot in the elevation map. Each cell of an elevation map has its own EMOI, and outdoor localization can be performed by matching EMOIs obtained from the robot and the pre-given elevation map. The experiments and simulations show that the proposed EMOI can be usefully exploited for outdoor localization with an elevation map and this feature can be easily applied to other probabilistic approaches such as Markov localization method.

Generation of Simulated Geospatial Images from Global Elevation Model and SPOT Ortho-Image

  • Park, Wan Yong;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.217-223
    • /
    • 2014
  • With precise sensor position, attitude element, and imaging resolution, a simulated geospatial image can be generated. In this study, a satellite image is simulated using SPOT ortho-image and global elevation data, and the geometric similarity between original and simulated images is analyzed. Using a SPOT panchromatic image and high-density elevation data from a 1/5K digital topographic map data an ortho-image with 10-meter resolution was produced. The simulated image was then generated by exterior orientation parameters and global elevation data (SRTM1, GDEM2). Experimental results showed that (1) the agreement of the image simulation between pixel location from the SRTM1/GDEM2 and high-resolution elevation data is above 99% within one pixel; (2) SRTM1 is closer than GDEM2 to high-resolution elevation data; (3) the location of error occurrence is caused by the elevation difference of topographical objects between high-density elevation data generated from the Digital Terrain Model (DTM) and Digital Surface Model (DSM)-based global elevation data. Error occurrences were typically found at river boundaries, in urban areas, and in forests. In conclusion, this study showed that global elevation data are of practical use in generating simulated images with 10-meter resolution.

Variation Analysis of Elevation within a Rice Paddy Field (수도작 포장의 고저차 분석)

  • Sung J.H.;Jang S.W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.188-193
    • /
    • 2006
  • Elevation differences within a paddy field relate strongly to plant health, crop homogeneity, and pest control. For precision agriculture (PA), the elevation within a field should be precisely controlled. We analyzed variation in elevation within a rice paddy field over one crop cycle. The study took place in a rectangular plot (100 m x 30 m). Elevations within the a plots was measured by a laser-equipped surveying instrument, that could determine elevations to precisions of I mm. The test field was divided into grids with 30 squares; elevation was measured at the center of each 5 x 10-m grid square. This study measured elevation during nine observation periods from pre-plowing to post-harvest. Descriptive statistics showed the highest elevations after plowing due to soil disturbance. One-way analysis of variance (ANOVA) revealed significant elevation differences before and after plowing and transplanting, although elevations were similar over the period of crop growth. Comparison of pre-plowing and post-harvest data showed differences in elevations, indicating that elevation changes occurred during plowing, rice transplanting, plant growth, and harvesting. In summary, the above statistical analysis indicated that elevation changes occurred due to plowing but not during the plant growth season or due to harvesting.

Foundation Differential Settlement Included Time-dependent Elevation Control for Super Tall Structures

  • Zhao, Xin;Liu, Shehong
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Due to the time-dependent properties of materials, structures, and loads, accurate time-dependent effects analysis and precise construction controls are very significant for rational analysis and design and saving project cost. Elevation control is an important part of the time-dependent construction control in supertall structures. Since supertall structures have numerous floors, heavy loads, long construction times, demanding processes, and are typically located in the soft coastal soil areas, both the time-dependent features of superstructure and settlement are very obvious. By using the time-dependent coupling effect analysis method, this paper compares Shanghai Tower's vertical deformation calculation and elevation control scheme, considering foundation differential settlement. The results show that the foundation differential settlement cannot be ignored in vertical deformation calculations and elevation control for supertall structures. The impact of foundation differential settlement for elevation compensation and pre-adjustment length can be divided into direct and indirect effects. Meanwhile, in the engineering practice of elevation control for supertall structures, it is recommended to adopt the multi-level elevation control method with relative elevation control and design elevation control, without considering the overall settlement in the construction process.

Comparative Study of Electromyography and Hand Elevation Test in Carpal Tunnel Syndrome

  • Yun, Tae Kyoung;Kim, Deok-Yeol;Ahn, Duck Sun
    • Archives of Reconstructive Microsurgery
    • /
    • v.24 no.1
    • /
    • pp.13-15
    • /
    • 2015
  • Purpose: Since the hand elevation test was first introduced by Ahn in 2001, it has been one of most performing provocative test for diagnosing carpal tunnel syndrome. Although many studies have been published on the hand elevation test, there are no study that can explain why false-negative results of hand elevation test appears in carpal tunnel syndrome patients diagnosed by electromyography (EMG) findings. Therefore we searched out whether hand elevation test is related with EMG severity. Materials and Methods: We made a retrospective study of 654 bilateral carpal tunnel syndrome patients. Among them 134 were studied which had different hand elevation test results on each hands. The paired samples t-test was used to compare the EMG severity of each group. The relationships between hand elevation test and EMG severity were examined using Pearson-product correlations. Comparing whether the frequency of false negative hand elevation were different between both hands, and whether the severity of EMG depends on which side of hand is, was evaluated with Mann-Whitney U-test. Results: Severity of EMG in positive group was moderate to severe on average, whereas mild to moderate on negative group, with significant difference statistically (p<0.001). Correlation between the hand elevation test results and EMG severity also showed significance statistically (p<0.001). Conclusion: Mild severity of EMG was found out to be the factor affecting the false results. However, EMG severity and hand elevation test shows a meaningful correlation, supporting the value of hand elevation test.

Effects of elevation on shoulder joint motion: comparison of dynamic and static conditions

  • Takaki Imai;Takashi Nagamatsu;Junichi Kawakami;Masaki Karasuyama;Nobuya Harada;Yu Kudo;Kazuya Madokoro
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.148-155
    • /
    • 2023
  • Background: Although visual examination and palpation are used to assess shoulder motion in clinical practice, there is no consensus on shoulder motion under dynamic and static conditions. This study aimed to compare shoulder joint motion under dynamic and static conditions. Methods: The dominant arm of 14 healthy adult males was investigated. Electromagnetic sensors attached to the scapular, thorax, and humerus were used to measure three-dimensional shoulder joint motion under dynamic and static elevation conditions and compare scapular upward rotation and glenohumeral joint elevation in different elevation planes and angles. Results: At 120° of elevation in the scapular and coronal planes, the scapular upward rotation angle was higher in the static condition and the glenohumeral joint elevation angle was higher in the dynamic condition (P<0.05). In scapular plane and coronal plane elevation 90°-120°, the angular change in scapular upward rotation was higher in the static condition and the angular change in scapulohumeral joint elevation was higher in the dynamic condition (P<0.05). No differences were found in shoulder joint motion in the sagittal plane elevation between the dynamic and static conditions. No interaction effects were found between elevation condition and elevation angle in all elevation planes. Conclusions: Differences in shoulder joint motion should be noted when assessing shoulder joint motion in different dynamic and static conditions.

The Relative Height Error Analysis of Digital Elevation Model on South Korea to Determine the TargetVertical Accuracy of CAS500-4 (농림위성의 목표 수직기하 정확도 결정을 위한 남한 지역 수치표고모델 상대 오차 분석)

  • Baek, Won-Kyung;Yu, Jin-Woo;Yoon, Young-Woong;Jung, Hyung-Sup;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1043-1059
    • /
    • 2021
  • Forest and agricultural land are very important factors in the environmental ecosystem and securing food resources. Forest and agricultural land should be monitored regularly. CAS500-4 data are expected to be effectively used as a supplement of monitoring forest and agricultural land. Prior to the launch of the CAS500-4, the relative canopy height error analysis of the digital elevation model on South Korea was performed to determine the vertical target accuracy. Especially, by considering area of interest of the CAS500-4 (mountainous or agricultural area), it is conducted that vertical error analysis according to the slope and canopy. For Gongju, Jeju, and Samcheok, the average root mean squared differences were calculated compared to the drone LiDAR digitalsurface models, which were filmed in autumn and winter and the 5 m digital elevation model from the National Geographic Information Institute. As a result, the Shuttle radar topography mission digital elevation model showed a root mean squared differences of about 8.35, 8.19, and 7.49 m, respectively, while the Copernicus digital elevation model showed a root mean squared differences of about 5.65, 6.73, and 7.39 m, respectively. In addition, the root mean squared difference of shuttle radar topography mission digital elevation model and the Copernicus digital elevation model according to the slope angle were estimated on South Korea compared to the 5 m digital elevation model from the National Geographic Information Institute. At the slope angle of between 0° to 5°, root mean squared differences of the Shuttle radar topography mission digital elevation model and the Copernicus digital elevation model showed 3.62 and 2.52 m, respectively. On the other hands root mean squared differences of the Shuttle radar topography mission digital elevation model and the Copernicus digital elevation model respectively showed about 10.16 and 11.62 m at the slope angle of 35° or higher.

Effect of Leg Elevation Height on Reduced Swelling of Patients of Postoperative Acute Ankle Fractures (급성 발목 골절 환자의 술 후 부종 감소에 대한 하지 거상의 효과)

  • Seo, Dong-Kyo;Kang, Hyun Wook;Ahn, Deug Suk;Song, Jae-Seok
    • Journal of Korean Foot and Ankle Society
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2020
  • Purpose: Leg elevation is known as an effective method for reducing leg swelling, and it has been routinely used in medical practice. However, the effect of swelling reduction in relation to the degree of elevation height is not known. This study evaluated the swelling of the leg after acute ankle fracture operations at two different elevation heights and the elevated leg heights were compared. Materials and Methods: A total of 66 patients with postoperative acute ankle fractures were classified into two groups depending on the presence of different leg elevation heights: high-elevated (HE, case) and low-elevated groups (LE, control). We checked leg swelling, pain, subjective satisfaction for the elevation device, and the American Orthopedic Foot and Ankle Society (AOFAS) score, and we retrospectively compared them between both the groups. Results: Leg swelling and pain were reduced in both groups. However, they did not show any significant differences between both the groups (p>0.05). Nineteen patients in the HE group replied with uncomfortable, while no patients in LE group did so. The AOFAS score at 1 year postoperatively did not show any significant differences between both the groups (p=0.46). Conclusion: High elevation of the leg after ankle fractures did not show a significant difference from low elevation in regard to leg swelling, pain, and function. Furthermore, high leg elevation resulted in discomfort during the postoperative period. Thus, low elevation with a pillow is enough for acute ankle fracture patients with little discomfort and satisfactory swelling reduction.