DOI QR코드

DOI QR Code

A Histone Deacetylase, MoHDA1 Regulates Asexual Development and Virulence in the Rice Blast Fungus

  • Kim, Taehyun (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University) ;
  • Lee, Song Hee (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University) ;
  • Oh, Young Taek (Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources) ;
  • Jeon, Junhyun (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
  • Received : 2020.06.09
  • Accepted : 2020.07.19
  • Published : 2020.08.01

Abstract

Interplay between histone acetylation and deacetylation is one of the key components in epigenetic regulation of transcription. Here we report the requirement of MoHDA1-mediated histone deacetylation during asexual development and pathogenesis for the rice blast fungus, Magnaporthe oryzae. Structural similarity and phylogenetic analysis suggested that MoHDA1 is an ortholog of Saccharomyces cerevisiae Hda1, which is a representative member of class II histone deacetylases. Targeted deletion of MoHDA1 caused a little decrease in radial growth and large reduction in asexual sporulation. Comparison of acetylation levels for H3K9 and H3K14 showed that lack of MoHDA1 gene led to significant increase in H3K9 and H3K14 acetylation level, compared to the wild-type and complementation strain, confirming that it is a bona fide histone deacetylase. Expression analysis on some of the key genes involved in asexual reproduction under sporulation-promoting condition showed almost no differences among strains, except for MoCON6 gene, which was up-regulated more than 6-fold in the mutant than wild-type. Although the deletion mutant displayed little defects in germination and subsequent appressorium formation, the mutant was compromised in its ability to cause disease. Wound-inoculation showed that the mutant is impaired in invasive growth as well. We found that the mutant was defective in appressorium-mediated penetration of host, but did not lose the ability to grow on the media containing H2O2. Taken together, our data suggest that MoHDA1-dependent histone deacetylation is important for efficient asexual development and infection of host plants in M. oryzae.

Keywords

References

  1. Adachi, N., Kimura, A. and Horikoshi, M. 2002. A conserved motif common to the histone acetyltransferase Esa1 and the histone deacetylase Rpd3. J. Biol. Chem. 277:35688-35695. https://doi.org/10.1074/jbc.M204640200
  2. Bannister, A. J. and Kouzarides, T. 2011. Regulation of chromatin by histone modifications. Cell Res. 21:381-395. https://doi.org/10.1038/cr.2011.22
  3. Carmen, A. A., Rundlett, S. E. and Grunstein, M. 1996. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem. 271:15837-15844. https://doi.org/10.1074/jbc.271.26.15837
  4. Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  5. Choi, J., Kim, K.-T., Huh, A., Kwon, S., Hong, C., Asiegbu, F. O., Jeon, J. and Lee, Y.-H. 2015. dbHiMo: a web-based epigenomics platform for histone-modifying enzymes. Database (Oxford) 2015:bav052. https://doi.org/10.1093/database/bav052
  6. Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  7. Ding, S.-L., Liu, W., Iliuk, A., Ribot, C., Vallet, J., Tao, A., Wang, Y., Lebrun, M.-H. and Xu, J.-R. 2010. The tig1 histone deacetylase complex regulates infectious growth in the rice blast fungus Magnaporthe oryzae. Plant Cell 22:2495-2508. https://doi.org/10.1105/tpc.110.074302
  8. Elias-Villalobos, A., Barrales, R. R. and Ibeas, J. I. 2019. Chromatin modification factors in plant pathogenic fungi: insights from Ustilago maydis. Fungal Genet. Biol. 129:52-64. https://doi.org/10.1016/j.fgb.2019.04.006
  9. Elias-Villalobos, A., Fernandez-Alvarez, A., Moreno-Sanchez, I., Helmlinger, D. and Ibeas, J. I. 2015. The Hos2 histone deacetylase controls Ustilago maydis virulence through direct regulation of mating-type genes. PLoS Pathog. 11:e1005134. https://doi.org/10.1371/journal.ppat.1005134
  10. Fernandez, J. and Orth, K. 2018. Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol. 26:582-597. https://doi.org/10.1016/j.tim.2017.12.007
  11. Howard, R. J. and Valent, B. 1996. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50:491-512. https://doi.org/10.1146/annurev.micro.50.1.491
  12. Jeon, J., Kwon, S. and Lee, Y.-H. 2014. Histone acetylation in fungal pathogens of plants. Plant Pathol. J. 30:1-9. https://doi.org/10.5423/PPJ.RW.01.2014.0003
  13. Jiang, C., Zhang, X., Liu, H. and Xu, J.-R. 2018. Mitogenactivated protein kinase signaling in plant pathogenic fungi. PLoS Pathog. 14:e1006875. https://doi.org/10.1371/journal.ppat.1006875
  14. Job, G., Brugger, C., Xu, T., Lowe, B. R., Pfister, Y., Qu, C., Shanker, S., Sanz, J. I. B., Partridge, J. F. and Schalch, T. 2016. SHREC silences heterochromatin via distinct remodeling and deacetylation modules. Mol. Cell 62:207-221. https://doi.org/10.1016/j.molcel.2016.03.016
  15. Lee, J., Lee, J.-J. and Jeon, J. 2019. A histone deacetylase, Mo-HOS2 regulates asexual development and virulence in the rice blast fungus. J. Microbiol. 57:1115-1125. https://doi.org/10.1007/s12275-019-9363-5
  16. Lee, K. K. and Workman, J. L. 2007. Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol. 8:284-295. https://doi.org/10.1038/nrm2145
  17. Li, Y., Wang, C., Liu, W., Wang, G., Kang, Z., Kistler, H. C. and Xu, J.-R. 2011. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Mol. Plant-Microbe Interact. 24:487-496. https://doi.org/10.1094/MPMI-10-10-0233
  18. Mulder, N. J. and Apweiler, R. 2008. The InterPro database and tools for protein domain analysis. Curr. Protoc. Bioinformatics Chapter 2:Unit 2.7.
  19. Park, J., Kim, S., Kwon, S. and Lee, Y.-H. 2014. A quick and accurate screening method for fungal gene-deletion mutants by direct, priority-based, and inverse PCRs. J. Microbiol. Methods 105:39-41. https://doi.org/10.1016/j.mimet.2014.06.023
  20. Robbins, N., Leach, M. D. and Cowen, L. E. 2012. Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance. Cell Rep. 2:878-888. https://doi.org/10.1016/j.celrep.2012.08.035
  21. Rundlett, S. E., Carmen, A. A., Kobayashi, R., Bavykin, S., Turner, B. M. and Grunstein, M. 1996. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. U. S. A. 93:14503-14508. https://doi.org/10.1073/pnas.93.25.14503
  22. Ryder, L. S. and Talbot, N. J. 2015. Regulation of appressorium development in pathogenic fungi. Curr. Opin. Plant Biol. 26:8-13. https://doi.org/10.1016/j.pbi.2015.05.013
  23. Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual. 3rd ed. Vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 2100 pp.
  24. Seto, E. and Yoshida, M. 2014. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6:a018713. https://doi.org/10.1101/cshperspect.a018713
  25. Shen, H., Zhu, Y., Wang, C., Yan, H., Teng, M. and Li, X. 2016. Structural and histone binding ability characterization of the ARB2 domain of a histone deacetylase Hda1 from Saccharomyces cerevisiae. Sci. Rep. 6:33905. https://doi.org/10.1038/srep33905
  26. Shi, Z. and Leung, H. 1995. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Mol. Plant-Microbe Interact. 8:949-959. https://doi.org/10.1094/MPMI-8-0949
  27. Sievers, F. and Higgins, D. G. 2018. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27:135-145. https://doi.org/10.1002/pro.3290
  28. Srikantha, T., Tsai, L., Daniels, K., Klar, A. J. and Soll, D. R. 2001. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J. Bacteriol. 183:4614-4625. https://doi.org/10.1128/JB.183.15.4614-4625.2001
  29. Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
  30. Wilson, R. A. and Talbot, N. J. 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7:185-195. https://doi.org/10.1038/nrmicro2032
  31. Wu, J., Suka, N., Carlson, M. and Grunstein, M. 2001. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol. Cell 7:117-126. https://doi.org/10.1016/S1097-2765(01)00160-5
  32. Yang, X.-J. and Seto, E. 2008. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9:206-218. https://doi.org/10.1038/nrm2346
  33. Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCRbased molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  34. Zacchi, L. F., Schulz, W. L. and Davis, D. A. 2010. HOS2 and HDA1 encode histone deacetylases with opposing roles in Candida albicans morphogenesis. PLoS ONE 5:e12171. https://doi.org/10.1371/journal.pone.0012171
  35. Zhang, H., Zhao, Q., Guo, X., Guo, M., Qi, Z., Tang, W., Dong, Y., Ye, W., Zheng, X., Wang, P. and Zhang, Z. 2014. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. Mol. Plant-Microbe Interact. 27:446-460. https://doi.org/10.1094/MPMI-09-13-0271-R
  36. Zhang, S. and Xu, J.-R. 2014. Effectors and effector delivery in Magnaporthe oryzae. PLoS Pathog. 10:e1003826. https://doi.org/10.1371/journal.ppat.1003826