References
- Adachi, N., Kimura, A. and Horikoshi, M. 2002. A conserved motif common to the histone acetyltransferase Esa1 and the histone deacetylase Rpd3. J. Biol. Chem. 277:35688-35695. https://doi.org/10.1074/jbc.M204640200
- Bannister, A. J. and Kouzarides, T. 2011. Regulation of chromatin by histone modifications. Cell Res. 21:381-395. https://doi.org/10.1038/cr.2011.22
- Carmen, A. A., Rundlett, S. E. and Grunstein, M. 1996. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J. Biol. Chem. 271:15837-15844. https://doi.org/10.1074/jbc.271.26.15837
- Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
- Choi, J., Kim, K.-T., Huh, A., Kwon, S., Hong, C., Asiegbu, F. O., Jeon, J. and Lee, Y.-H. 2015. dbHiMo: a web-based epigenomics platform for histone-modifying enzymes. Database (Oxford) 2015:bav052. https://doi.org/10.1093/database/bav052
- Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
- Ding, S.-L., Liu, W., Iliuk, A., Ribot, C., Vallet, J., Tao, A., Wang, Y., Lebrun, M.-H. and Xu, J.-R. 2010. The tig1 histone deacetylase complex regulates infectious growth in the rice blast fungus Magnaporthe oryzae. Plant Cell 22:2495-2508. https://doi.org/10.1105/tpc.110.074302
- Elias-Villalobos, A., Barrales, R. R. and Ibeas, J. I. 2019. Chromatin modification factors in plant pathogenic fungi: insights from Ustilago maydis. Fungal Genet. Biol. 129:52-64. https://doi.org/10.1016/j.fgb.2019.04.006
- Elias-Villalobos, A., Fernandez-Alvarez, A., Moreno-Sanchez, I., Helmlinger, D. and Ibeas, J. I. 2015. The Hos2 histone deacetylase controls Ustilago maydis virulence through direct regulation of mating-type genes. PLoS Pathog. 11:e1005134. https://doi.org/10.1371/journal.ppat.1005134
- Fernandez, J. and Orth, K. 2018. Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol. 26:582-597. https://doi.org/10.1016/j.tim.2017.12.007
- Howard, R. J. and Valent, B. 1996. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50:491-512. https://doi.org/10.1146/annurev.micro.50.1.491
- Jeon, J., Kwon, S. and Lee, Y.-H. 2014. Histone acetylation in fungal pathogens of plants. Plant Pathol. J. 30:1-9. https://doi.org/10.5423/PPJ.RW.01.2014.0003
- Jiang, C., Zhang, X., Liu, H. and Xu, J.-R. 2018. Mitogenactivated protein kinase signaling in plant pathogenic fungi. PLoS Pathog. 14:e1006875. https://doi.org/10.1371/journal.ppat.1006875
- Job, G., Brugger, C., Xu, T., Lowe, B. R., Pfister, Y., Qu, C., Shanker, S., Sanz, J. I. B., Partridge, J. F. and Schalch, T. 2016. SHREC silences heterochromatin via distinct remodeling and deacetylation modules. Mol. Cell 62:207-221. https://doi.org/10.1016/j.molcel.2016.03.016
- Lee, J., Lee, J.-J. and Jeon, J. 2019. A histone deacetylase, Mo-HOS2 regulates asexual development and virulence in the rice blast fungus. J. Microbiol. 57:1115-1125. https://doi.org/10.1007/s12275-019-9363-5
- Lee, K. K. and Workman, J. L. 2007. Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol. 8:284-295. https://doi.org/10.1038/nrm2145
- Li, Y., Wang, C., Liu, W., Wang, G., Kang, Z., Kistler, H. C. and Xu, J.-R. 2011. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Mol. Plant-Microbe Interact. 24:487-496. https://doi.org/10.1094/MPMI-10-10-0233
- Mulder, N. J. and Apweiler, R. 2008. The InterPro database and tools for protein domain analysis. Curr. Protoc. Bioinformatics Chapter 2:Unit 2.7.
- Park, J., Kim, S., Kwon, S. and Lee, Y.-H. 2014. A quick and accurate screening method for fungal gene-deletion mutants by direct, priority-based, and inverse PCRs. J. Microbiol. Methods 105:39-41. https://doi.org/10.1016/j.mimet.2014.06.023
- Robbins, N., Leach, M. D. and Cowen, L. E. 2012. Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance. Cell Rep. 2:878-888. https://doi.org/10.1016/j.celrep.2012.08.035
- Rundlett, S. E., Carmen, A. A., Kobayashi, R., Bavykin, S., Turner, B. M. and Grunstein, M. 1996. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. U. S. A. 93:14503-14508. https://doi.org/10.1073/pnas.93.25.14503
- Ryder, L. S. and Talbot, N. J. 2015. Regulation of appressorium development in pathogenic fungi. Curr. Opin. Plant Biol. 26:8-13. https://doi.org/10.1016/j.pbi.2015.05.013
- Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual. 3rd ed. Vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 2100 pp.
- Seto, E. and Yoshida, M. 2014. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6:a018713. https://doi.org/10.1101/cshperspect.a018713
- Shen, H., Zhu, Y., Wang, C., Yan, H., Teng, M. and Li, X. 2016. Structural and histone binding ability characterization of the ARB2 domain of a histone deacetylase Hda1 from Saccharomyces cerevisiae. Sci. Rep. 6:33905. https://doi.org/10.1038/srep33905
- Shi, Z. and Leung, H. 1995. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Mol. Plant-Microbe Interact. 8:949-959. https://doi.org/10.1094/MPMI-8-0949
- Sievers, F. and Higgins, D. G. 2018. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27:135-145. https://doi.org/10.1002/pro.3290
- Srikantha, T., Tsai, L., Daniels, K., Klar, A. J. and Soll, D. R. 2001. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J. Bacteriol. 183:4614-4625. https://doi.org/10.1128/JB.183.15.4614-4625.2001
- Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
- Wilson, R. A. and Talbot, N. J. 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7:185-195. https://doi.org/10.1038/nrmicro2032
- Wu, J., Suka, N., Carlson, M. and Grunstein, M. 2001. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol. Cell 7:117-126. https://doi.org/10.1016/S1097-2765(01)00160-5
- Yang, X.-J. and Seto, E. 2008. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9:206-218. https://doi.org/10.1038/nrm2346
- Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCRbased molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001
- Zacchi, L. F., Schulz, W. L. and Davis, D. A. 2010. HOS2 and HDA1 encode histone deacetylases with opposing roles in Candida albicans morphogenesis. PLoS ONE 5:e12171. https://doi.org/10.1371/journal.pone.0012171
- Zhang, H., Zhao, Q., Guo, X., Guo, M., Qi, Z., Tang, W., Dong, Y., Ye, W., Zheng, X., Wang, P. and Zhang, Z. 2014. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. Mol. Plant-Microbe Interact. 27:446-460. https://doi.org/10.1094/MPMI-09-13-0271-R
- Zhang, S. and Xu, J.-R. 2014. Effectors and effector delivery in Magnaporthe oryzae. PLoS Pathog. 10:e1003826. https://doi.org/10.1371/journal.ppat.1003826