DOI QR코드

DOI QR Code

Comparative Pathogenicity and Host Ranges of Magnaporthe oryzae and Related Species

  • Chung, Hyunjung (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Goh, Jaeduk (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Han, Seong-Sook (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Roh, Jae-Hwan (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Yangseon (Center for Industrialization of Agricultural and Livestock Microorganisms) ;
  • Heu, Sunggi (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Shim, Hyeong-Kwon (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Da Gyeong (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kang, In Jeong (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Yang, Jung-Wook (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
  • Received : 2020.04.07
  • Accepted : 2020.07.07
  • Published : 2020.08.01

Abstract

Host shifting and host expansion of fungal plant pathogens increases the rate of emergence of new pathogens and the incidence of disease in various crops, which threaten global food security. Magnaporthe species cause serious disease in rice, namely rice blast disease, as well as in many alternative hosts, including wheat, barley, and millet. A severe outbreak of wheat blast due to Magnaporthe oryzae occurred recently in Bangladesh, after the fungus was introduced from South America, causing great loss of yield. This outbreak of wheat blast is of growing concern, because it might spread to adjacent wheat-producing areas. Therefore, it is important to understand the host range and population structure of M. oryzae and related species for determining the evolutionary relationships among Magnaporthe species and for managing blast disease in the field. Here, we collected isolates of M. oryzae and related species from various Poaceae species, including crops and weeds surrounding rice fields, in Korea and determined their phylogenetic relationships and host species specificity. Internal transcribed spacer-mediated phylogenetic analysis revealed that M. oryzae and related species are classified into four groups primarily including isolates from rice, crabgrass, millet and tall fescue. Based on pathogenicity assays, M. oryzae and related species can infect different Poaceae hosts and move among hosts, suggesting the potential for host shifting and host expansion in nature. These results provide important information on the diversification of M. oryzae and related species with a broad range of Poaceae as hosts in crop fields.

Keywords

References

  1. Asuke, S., Tanaka, M., Hyon, G.-S., Inoue, Y., Vy, T. T. P., Niwamoto, D., Nakayashiki, H. and Tosa, Y. 2020. Evolution of an Eleusine-specific subgroup of Pyricularia oryzae through a gain of an avirulence gene. Mol. Plant-Microbe Interact. 33:153-165. https://doi.org/10.1094/MPMI-03-19-0083-R
  2. Bryan, G. T., Wu, K.-S., Farrall, L., Jia, Y., Hershey, H. P., McAdams, S. A., Faulk, K. N., Donaldson, G. K., Tarchini, R. and Valent, B. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033-2046. https://doi.org/10.2307/3871103
  3. Chiapello, H., Mallet, L., Guerin, C., Aguileta, G., Amselem, J., Kroj, T., Ortega-Abboud, E., Lebrun, M.-H., Henrissat, B., Gendrault, A., Rodolphe, F., Tharreau, D. and Fournier, E. 2015. Deciphering genome content and evolutionary relationships of isolates from the fungus Magnaporthe oryzae attacking different host plants. Genome Biol. Evol. 7:2896-2912. https://doi.org/10.1093/gbe/evv187
  4. Choi, J., Park, S.-Y., Kim, B.-R., Roh, J.-H., Oh, I.-S., Han, S.-S. and Lee, Y.-H. 2013. Comparative analysis of pathogenicity and phylogenetic relationship in Magnaporthe grisea species complex. PLoS ONE 8:e57196. https://doi.org/10.1371/journal.pone.0057196
  5. Choi, W.-B., Chun, S.-J. and Lee, Y.-H. 1996. Host range of Korean isolates of Magnaporthe grisea. Korean J. Plant Pathol. 12:453-454.
  6. Chuma, I., Isobe, C., Hotta, Y., Ibaragi, K., Futamata, N., Kusaba, M., Yoshida, K., Terauchi, R., Fujita, Y., Nakayashiki, H., Valent, B. and Tosa, Y. 2011. Multiple translocation of the AVRPita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog. 7:e1002147. https://doi.org/10.1371/journal.ppat.1002147
  7. Couch, B. C., Fudal, I., Lebrun, M.-H., Tharreau, D., Valent, B., Van Kim, P., Notteghem, J.-L. and Kohn, L. M. 2005. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613-630. https://doi.org/10.1534/genetics.105.041780
  8. Couch, B. C. and Kohn, L. M. 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683-693. https://doi.org/10.1080/15572536.2003.11833196
  9. de Jonge, R., Bolton, M. D., Kombrink, A., van den Berg, G. C. M., Yadeta, K. A. and Thomma, B. P. H. J. 2013. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 23:1271-1282. https://doi.org/10.1101/gr.152660.112
  10. Fairhurst, T. and Dobermann, A. 2002. Rice in the global food supply. World 5:454349-511675.
  11. Farman, M. L., Eto, Y., Nakao, T., Tosa, Y., Nakayashiki, H., Mayama, S. and Leong, S. A. 2002. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol. Plant-Microbe Interact. 15:6-16. https://doi.org/10.1094/MPMI.2002.15.1.6
  12. Farman, M., Peterson, G., Chen, L., Starnes, J., Valent, B., Bachi, P., Murdock, L., Hershman, D., Pedley, K., Fernandes, J. M. and Bavaresco, J. 2017. The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Dis. 101:684-692. https://doi.org/10.1094/PDIS-05-16-0700-RE
  13. Fernandez, J. and Orth, K. 2018. Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol. 26:582-597. https://doi.org/10.1016/j.tim.2017.12.007
  14. Gaut, B. S. 2002. Evolutionary dynamics of grass genomes. New Phytol. 154:15-28. https://doi.org/10.1046/j.1469-8137.2002.00352.x
  15. George, M. L. C., Nelson, R. J., Zeigler, R. S. and Leung, H. 1998. Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology 88:223-229. https://doi.org/10.1094/PHYTO.1998.88.3.223
  16. Gnanamanickam, S. S. 2009. Biological control of rice diseases. Springer, Dordrecht, Netherlands. 108 pp.
  17. Goh, J., Kim, B.-R., Lee, S.-W., Roh, J.-H., Shin, D.-B., Jeung, J.-U., Cho, Y.-C. and Han, S.-S. 2013. Selection of representative Magnaporthe oryzae isolates and rice resistant gene types for screening of blast-resistant rice cultivars. Res. Plant Dis. 19:243-253. https://doi.org/10.5423/RPD.2013.19.4.243
  18. Hirata, K., Kusaba, M., Chuma, I., Osue, J., Nakayashiki, H., Mayama, S. and Tosa, Y. 2007. Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycol. Res. 111:799-808. https://doi.org/10.1016/j.mycres.2007.05.014
  19. Inoue, Y., Vy, T. T. P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S., Anh, V. L., Cumagun, C. J. R., Chuma, I., Terauchi, R., Kato, K., Mitchell, T., Valent, B., Farman, M. and Tosa, Y. 2017. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357:80-83. https://doi.org/10.1126/science.aam9654
  20. Islam, M. T., Croll, D., Gladieux, P., Soanes, D. M., Persoons, A., Bhattacharjee, P., Hossain, M. S., Gupta, D. R., Rahman, M. M., Mahboob, M. G., Cook, N., Salam, M. U., Surovy, M. Z., Sancho, V. B., Maciel, J. L. N., NhaniJunior, A., Castroagudin, V. L., de Assis Reges, J. T., Ceresini, P. C., Ravel, S., Kellner, R., Fournier, E., Tharreau, D., Lebrun, M.-H., McDonald, B. A., Stitt, T., Swan, D., Talbot, N. J., Saunders, D. G. O., Win, J. and Kamoun, S. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 14:84. https://doi.org/10.1186/s12915-016-0309-7
  21. Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P. and Valent, B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19:4004-4014. https://doi.org/10.1093/emboj/19.15.4004
  22. Kang, S., Sweigard, J. A. and Valent, B. 1995. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 8:939-948. https://doi.org/10.1094/MPMI-8-0939
  23. Kato, H., Yamamoto, M., Yamaguchi-Ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., Tosa, Y., Mayama, S. and Mori, N. 2000. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J. Gen. Plant Pathol. 66:30-47. https://doi.org/10.1007/PL00012919
  24. Kellogg, E. A. 2001. Evolutionary history of the grasses. Plant Physiol. 125:1198-1205. https://doi.org/10.1104/pp.125.3.1198
  25. Khang, C. H., Park, S.-Y., Lee, Y.-H., Valent, B. and Kang, S. 2008. Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol. Plant-Microbe Interact. 21:658-670. https://doi.org/10.1094/MPMI-21-5-0658
  26. Kim, K.-T., Ko, J., Song, H., Choi, G., Kim, H., Jeon, J., Cheong, K., Kang, S. and Lee, Y.-H. 2019. Evolution of the genes encoding effector candidates within multiple pathotypes of Magnaporthe oryzae. Front. Microbiol. 10:2575. https://doi.org/10.3389/fmicb.2019.02575
  27. Li, W., Wang, B., Wu, J., Lu, G., Hu, Y., Zhang, X., Zhang, Z., Zhao, Q., Feng, Q., Zhang, H., Wang, Z., Wang, G., Han, B., Wang, Z. and Zhou, B. 2009. The Magnaporthe oryzae avirulence gene AVRPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol. Plant-Microbe Interact. 22:411-420. https://doi.org/10.1094/MPMI-22-4-0411
  28. Malaker, P. K., Barma, N. C. D., Tiwary, T. P., Collis, W. J., Duveiller, E., Singh, P. K., Joshi, A. K., Singh, R. P., Braun, H.-J., Peterson, G. L., Pedley, K. F., Farman, M. L. and Valent, B. 2016. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis. 100:2330.
  29. Orbach, M. J., Farrall, L., Sweigard, J. A., Chumley, F. G. and Valent, B. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019-2032. https://doi.org/10.1105/tpc.12.11.2019
  30. Ou, S. H. 1985. Rice diseases. 2nd ed. Commonwealth Mycological Institute, Kew, Surrey, UK. 380 pp.
  31. Park, S.-Y., Milgroom, M. G., Han, S. S., Kang, S. and Lee, Y.-H. 2008. Genetic differentiation of Magnaporthe oryzae populations from scouting plots and commercial rice fields in Korea. Phytopathology 98:436-442. https://doi.org/10.1094/PHYTO-98-4-0436
  32. Prabhu, A. S., Araujo, L. G., Silva, G. B. and Trindade, M. G. 2007. Virulence and rep-PCR analysis of Pyricularia grisea isolates from two Brazilian upland rice cultivars. Fitopatol. Bras. 32:13-20. https://doi.org/10.1590/S0100-41582007000100002
  33. Seidl, M. F. and Thomma, B. P. H. J. 2014. Sex or no sex: evolutionary adaptation occurs regardless. BioEssays 36:335-345. https://doi.org/10.1002/bies.201300155
  34. Silue, D., Notteghem, J. L. and Tharreau, D. 1992. Evidence of a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology 82:577-580. https://doi.org/10.1094/Phyto-82-577
  35. Sweigard, J. A., Carroll, A. M., Kang, S., Farrall, L., Chumley, F. G. and Valent, B. 1995. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:1221-1233. https://doi.org/10.1105/tpc.7.8.1221
  36. Takabayashi, N., Tosa, Y., Oh, H. S. and Mayama, S. 2002. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology 92:1182-1188. https://doi.org/10.1094/PHYTO.2002.92.11.1182
  37. Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
  38. Tosa, Y., Osue, J., Oh, H.-S., Nakayashiki, H., Mayama, S. and Leong, S. A. 2005. Evolution of an avirulence gene, AVR1-CO39, concomitant with the evolution and differentiation of Magnaporthe oryzae. Mol. Plant-Microbe Interact. 18:1148-1160. https://doi.org/10.1094/MPMI-18-1148
  39. Tosa, Y., Tamba, H., Tanaka, K. and Mayama, S. 2006. Genetic analysis of host species specificity of Magnaporthe oryzae isolates from rice and wheat. Phytopathology 96:480-484. https://doi.org/10.1094/PHYTO-96-0480
  40. Urashima, A. S., Igarashi, S. and Kato, H. 1993. Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis. 77:1211-1216. https://doi.org/10.1094/PD-77-1211
  41. Valent, B. 1990. Rice blast as a model system for plant pathology. Phytopathology 80:33-36. https://doi.org/10.1094/Phyto-80-33
  42. Valent, B., Farrall, L. and Chumley, F. G. 1991. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127:87-101. https://doi.org/10.1093/genetics/127.1.87
  43. Valent, B. and Khang, C. H. 2010. Recent advances in rice blast effector research. Curr. Opin. Plant Biol. 13:434-441. https://doi.org/10.1016/j.pbi.2010.04.012
  44. Wang, B.-H., Ebbole, D. J. and Wang, Z.-H. 2017. The arms race between Magnaporthe oryzae and rice: diversity and interaction of Avr and R genes. J. Integr. Agric. 16:2746-2760. https://doi.org/10.1016/S2095-3119(17)61746-5
  45. Woolhouse, M. E. J., Haydon, D. T. and Antia, R. 2005. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20:238-244. https://doi.org/10.1016/j.tree.2005.02.009
  46. Yaegashi, H. and Asaga, K. 1981. Further studies on the inheritance of pathogenicity in crosses of Pyricularia oryzae with Pyricularia sp. from finger millet. Ann. Phytopathol. Soc. Jpn. 47:677-679. https://doi.org/10.3186/jjphytopath.47.677
  47. Yoshida, K., Saitoh, H., Fujisawa, S., Kanzaki, H., Matsumura, H., Yoshida, K., Tosa, Y., Chuma, I., Takano, Y., Win, J., Kamoun, S. and Terauchi, R. 2009. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573-1591. https://doi.org/10.1105/tpc.109.066324
  48. Yoshida, K., Saunders, D. G. O., Mitsuoka, C., Natsume, S., Kosugi, S., Saitoh, H., Inoue, Y., Chuma, I., Tosa, Y., Cano, L. M., Kamoun, S. and Terauchi, R. 2016. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics 17:370. https://doi.org/10.1186/s12864-016-2690-6
  49. Zhong, Z., Norvienyeku, J., Chen, M., Bao, J., Lin, L., Chen, L., Lin, Y., Wu, X., Cai, Z., Zhang, Q., Lin, X., Hong, Y., Huang, J., Xu, L., Zhang, H., Chen, L., Tang, W., Zheng, H., Chen, X., Wang, Y., Lian, B., Zhang, L., Tang, H., Lu, G., Ebbole, D. J., Wang, B. and Wang, Z. 2016. Directional selection from host plants is a major force driving host specificity in Magnaporthe species. Sci. Rep. 6:25591. https://doi.org/10.1038/srep25591