DOI QR코드

DOI QR Code

Effect of Momentum Flux Ratio on Combustion Instabilities in a Model Combustor with a Gas-Centered Swirl Coaxial Injector

기체 중심 스월 동축형 분사기가 장착된 모형연소기의 운동량비 변화에 따른 연소불안정성 분석

  • Sohn, Chae Hoon (Department of Mechanical Engineering, Sejong University) ;
  • Kim, Myeong Sub (Department of Mechanical Engineering, Sejong University) ;
  • Wang, Yuangang (Department of Mechanical Engineering, Sejong University) ;
  • Yoon, Youngbin (School of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2020.04.03
  • Accepted : 2020.06.02
  • Published : 2020.08.31

Abstract

A numerical study on combustion instabilities in a model combustor was conducted with various momentum flux ratios. Five ratios are calculated based on an actual operating condition of rocket engine. As momentum flux ratio increases, the spreading angle on the injector outlet decreases. And, as increase of axial momentum flux, pressure fluctuation decreases inside the combustor. By using dynamic mode decomposition method, the acoustic modes inside the combustor are identified. Combustion stabilities are analyzed by comparing the damping coefficient of the 2nd longitudinal mode.

모형 연소기에서 동축형 분사기에 의한 연소불안정성을 운동량비 변화에 따라 수치적으로 분석하였다. 실제 로켓 엔진의 경계조건을 기반으로 총 5개의 운동량비를 선택하였다. 운동량비가 증가할수록 분사기 출구에서의 확산각도는 감소하는 경향을 보였으며, 축방향 운동량이 증가할수록 연소기 내부의 압력진폭이 크게 감소함을 확인하였다. 동적 모드 분해 기법(dynamic mode decomposition)을 통해 연소기내의 음향 모드를 파악하였고 관심 섭동 주파수를 갖는 2L 모드(mode)의 감쇠계수를 구하고 이를 통해 운동량비가 증가할수록 연소기의 안정성이 증가함을 보였다.

Keywords

Acknowledgement

본 연구는 서울대학교 차세대 우주추진 연구 센터와 연계된 미래창조과학부의 재원으로 한국연구재단의 지원을 받아 수행한 선도연구센터지원사업(NRF-2013R1A5A1073861)의 연구 결과입니다. 저자중 손채훈과 김명섭은 정부(과학기술정보통신부)의 재원으로 한국연구재단 우주핵심기술개발사업(2018M1A3A3A03051917)의 지원을 부분적으로 받았습니다. 이에 감사드립니다.

References

  1. Sutton, G.P., "History of Liquid-Propellant Rocket Engines in Russia, Formerly the Soviet Union," Journal of Propulsion and Power, Vol. 19, No. 6, pp. 1008-1037, 2003. https://doi.org/10.2514/2.6943
  2. Sung, D.H., Huh, H.I. and Sohn, C.H., "Combustion Instability of Liquid Rocket Engines," Journal of The Korean Society Aeronautical and Space Sciences, Vol. 32, No. 9, pp. 153-161, 2004. https://doi.org/10.5139/JKSAS.2004.32.9.153
  3. Kim, S.H., Kim, Y.J. and Sohn, C.H., "Acoustic Damping of Gas-liquid Scheme Injectors with a Recess in a Subscale Combustor," Journal of Mechanical Science and Technology, Vol. 28, No. 9, pp. 3813-3823, 2014. https://doi.org/10.1007/s12206-014-0845-4
  4. Kim, Y.J., Sohn, C.H., Hong, M.G. and Lee, S.Y., "An Analysis of Fuel-oxidizer Mixing and Combustion Induced by Swirl Coaxial Jet Injector with a Model of Gas-gas Injection," Aerospace Science and Technology, Vol. 37, pp. 37-47, 2014. https://doi.org/10.1016/j.ast.2014.05.006
  5. Son, J.W., Sohn, C.H., Park, G.J. and Yoon, Y.B., "Spray Patterns and Injection Characteristics of Gas-Centered Swirl Coaxial Injectors," Journal of Aerospace Engineering, Vol. 30, No. 5, pp. 04017035-1-8, 2017. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000745
  6. Yoon, W.S. and Huh, H.I., "Prediction of High Frequency Combustion Instabilities of a Liquid Rocket Engine," Journal of the Korean Society of Propulsion Engineers, Vol. 7, No. 3, pp. 61-68, 2003.
  7. Pyo, Y.M., Yoon, M.G. and Kim, D.S., "Combustion Instability Analysis Using Network Model in an Annular Gas Turbine Combustor," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 3, pp. 72-80, 2018. https://doi.org/10.6108/KSPE.2018.22.3.072
  8. Wang Y.G., Son J.W. and Sohn C.H., "A Study on Factors Affecting Combustion Characteristics of GCSC Injector," Journal of The Korean Society of Combustion, Vol. 24, No. 1, pp. 32-38, 2019. https://doi.org/10.15231/jksc.2019.24.1.032
  9. ANSYS, Ansys fluent theory guide, 2019 R2, ANSYS Inc., 2019.
  10. Westbrook, C.K. and Dryer F.L., "Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames," Combustion Science and Technology, Vol. 27, pp. 31-43, 1981. https://doi.org/10.1080/00102208108946970
  11. Schmid P., "Dynamic mode decomposition of numerical and experimental data," Journal of Fluid Mechanics, Vol. 656, pp. 2-28, 2010. https://doi.org/10.1017/S0022112010001217
  12. Son J.W., Sohn, C.H., Yoon, J.S. and Yoon. Y.B., "Evaluation of Combustion Instability in a Model Gas Turbine Adopting Flame Transfer Function and Dynamic Mode Decomposition," Journal of The Korean Society of Combustion, Vol. 22, No. 2, pp. 6-13, 2017.
  13. Turn, S.R., An Introduction to combustion : Concept and Application, 3rd ed., McGraw-Hill Inc., New York, N.Y., U.S.A., 2012.
  14. Sohn C.H., Seol, W.S., Shibanov. A.A. and Pikalov V.P., "On the Method for Hot-Fire Modeling of High-Frequency Combustion Instability in Liquid Rocket Engines," KSME International Journal, Vol. 18, No. 6, pp. 1010-1018, 2004. https://doi.org/10.1007/BF02990873