DOI QR코드

DOI QR Code

Concentration- and Time-Dependent Effect of Disinfectant Treatment on Sorghum Seeds

소독제의 침지시간 및 희석농도가 수수 발아 및 오염율에 미치는 영향

  • Kim, Kyeongmin (Department of Crop Science, Chungnam National University) ;
  • Choi, Se-Hyun (Department of Crop Science, Chungnam National University) ;
  • Kim, Changsoo (Department of Crop Science, Chungnam National University)
  • 김경민 (충남대학교 식물자원학과) ;
  • 최세현 (충남대학교 식물자원학과) ;
  • 김창수 (충남대학교 식물자원학과)
  • Received : 2020.02.05
  • Accepted : 2020.04.02
  • Published : 2020.06.01

Abstract

Sorghum (Sorghum bicolor L.) is an annual crop belonging to Poaceae, and is the fifth-largest crop after maize, wheat, rice, and barley. This study was conducted to establish an efficient seed sterilization method to manage fungal or bacterial infections of germinating sorghum seeds. Two varieties of sorghum seeds (BTx623 and SAP317) were treated with benomyl-thiram and thiophanate-methyl triflumizole which are known to be effective disinfectants for sorghum seeds. For SAP317, the highest germination rate was accomplished with 24-hour treatment of both chemicals at a 200× dilution rate. For BTx623, the highest germination rate was observed after 24-hour treatment at a 200×/400× dilution rate for benomyl-thiram and control/200× for thiophanate-methyl triflumizole. Consequently, the optimal treatment for the seed disinfection in sorghum seeds may be at the dilution rate of 200× or 400× for 24 hours.

본 연구는 수수 종자에 소독제를 이용하여 알맞은 종자 소독방법을 확립하고자 수행되었으며, 수행된 결과를 요약하면 아래와 같다. 종자소독 실험에 있어 희석액 200배 기준으로 침지시간에 따른 발아율은 SAP317과 BTx623 두 품종 모두 베노밀·티람수화제를 처리하지 않는 무처리와 소독제에 24시간 침지처리에서 발아율이 가장 높았다. 오염률은 무처리를 제외하고 약제소독 처리에서 효과가 있는 것으로 나타났다. 티오파네이트메틸·트리플루미졸수화제 또한 같은 결과를 나타냈다. 베노밀·티람수화제를 24시간 침종 처리한 후 SAP317 품종에서의 발아율은 무처리와 200배, 400배액에서 가장 높았으며, BTx623 품종에서의 발아율은 200배와 400배액에서 높았다. 티오파네이트메틸·트리플루미졸수화제를 24시간 침종 처리한 후 SAP317과 BTx623 두 품종에서의 발아율은 무처리와 200배 처리에서 가장 높았다. 오염률은 SAP317 품종에서는 두 소독제 모두 무처리를 제외하고 모든 농도 처리에서 효과가 있는 것으로 나타났으며, BTx623 품종에서는 두 소독제 모두 100배와 200배 처리에서 효과가 있는 것으로 나타났다. 수수 종자소독 시 활용가능한 기초자료를 정립하기 위해 실시한 실험결과를 종합하여 볼 때 수수종자의 발아율 향상 및 오염률을 줄이기 위해서는 베노밀·티람수화제와 티오파네이트메틸·트리플루미졸수화제 소독제를 200배 희석하여 24시간 침지 하는 것이 수수 종자소독에 가장 효율적이었다.

Keywords

References

  1. Afify, A.E.-M.M., H.S. El-Beltagi, S.M.A. El-Salam, and A. A. Omran. 2011. Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. Plos one, 6.
  2. Beck, C., J. Grieser, M. Kottek, F. Rubel, and B. Rudolf. 2005. Characterizing global climate change by means of Köppen climate classification. Klimastatusbericht, 51 : 139-149.
  3. Choi, B., S. Kim, D. Song, S. Cho, M. Chin, and K. Park. 1996. Growth characteristics and grain yields for introduced germplasms of grain sorghum. Journal of the Korean Society of International Agriculture, 8 : 143-150.
  4. Choi, H., S. Hong, Y. Lee, W. Kim. 2013. Diversity and pathogenicity of Fusarium species associated with grain mold of sorghum. Korean Journal of Mycology, 41 : 142-148. https://doi.org/10.4489/KJM.2013.41.3.142
  5. Choi, Y., Y. Moon, S. Ahn, Y. Yoon, Y. Cha, B. Koo, et al. 2012. Characteristics of sweet sorghum germplasm for bioethanol production in reclaimed soil. Korean Journal of Crop Science/Hanguk Jakmul Hakhoe Chi, 57 : 384-388. https://doi.org/10.7740/kjcs.2012.57.4.384
  6. Dillon, S. L., P. K. Lawrence, R. J. Henry, H. J. Price. 2007. Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. Plant Systematics and Evolution 268 : 29-43. https://doi.org/10.1007/s00606-007-0571-9
  7. Elkhalifa, A. E. O., B. Schiffler, and R. Bernhardt. 2005. Effect of fermentation on the functional properties of sorghum flour. Food Chemistry, 92 : 1-5. https://doi.org/10.1016/j.foodchem.2004.05.058
  8. Faize, M., L. Burgos, L. Faize, A. Piqueras, E. Nicolas, G. Barba-Espin, et al. 2011. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. Journal of Experimental Botany, 62 : 2599-2613. https://doi.org/10.1093/jxb/erq432
  9. FAOSTAT. 2018. http://www.fao.org/faostat/en/#data/QC/visualize
  10. Khosla, R., N. Persaud, N, Powell, and D. Brann. 1995. Water use of sorghum on a marginal soil in eastern Virginia. In: Agronomy Abstracts, p. 433.
  11. Min, H.-G., C. Y. Park, H.-K. Lee, Y.-A. Yeom, J. Oh, B. -S. Kim, et al. 2017. A Survey of Viral Diseases of Proso Millet (Panicum miliaceum L.) and Sorghum (Sorghum bicolor L.) in South Korea. Research in Plant Disease 23 : 262-267. https://doi.org/10.5423/RPD.2017.23.3.262
  12. Murty, D. and K. Kumar. 1995. Traditional uses of sorghum and millets. Sorghum and millets: Chemistry and technology 221.
  13. Oyebanji, O., O. Nweke, O. Odebunmi, N. Galadima, M. Idris, U. Nnodi, et al. 2009. Simple, effective and economical explantsurface sterilization protocol for cowpea, rice and sorghum seeds. African Journal of Biotechnology, 8.
  14. Park, H., M. Ko, J. Kim, K. Oh, and S. Pae. 1999. Agronomic characteristics of common millet (Panicum miliaceum L.) varieties. Korean J. Breed, 31: 428-433.
  15. Shim, D., K. E. Song, C. Y. Park, S. H. Jeon, J. G. Hwang, E.-J. Kang, et al. 2018. Effects of Hydrogen Peroxide on Germination and Early Growth of Sorghum (Sorghum bicolor). Korean Journal of Crop Science, 63 : 140-148. https://doi.org/10.7740/KJCS.2018.63.2.140
  16. Younesi, O. and A. Moradi. 2009. The effect of water limitation in the field on sorghum seed germination and vigor. Australian Journal of Basic and Applied Sciences 3 : 1156-1159.