DOI QR코드

DOI QR Code

Combining Independent Permutation p-Values Associated with Multi-Sample Location Test Data

  • Um, Yonghwan (Dept. of Industrial and Management Engineering, Sungkyul University)
  • Received : 2020.05.06
  • Accepted : 2020.07.17
  • Published : 2020.07.31

Abstract

Fisher's classical method for combining independent p-values from continuous distributions is widely used but it is known to be inadequate for combining p-values from discrete probability distributions. Instead, the discrete analog of Fisher's classical method is used as an alternative for combining p-values from discrete distributions. In this paper, firstly we obtain p-values from discrete probability distributions associated with multi-sample location test data (Fisher-Pitman test and Kruskall-Wallis test data) by permutation method, and secondly combine the permutaion p-values by the discrete analog of Fisher's classical method. And we finally compare the combined p-values from both the discrete analog of Fisher's classical method and Fisher's classical method.

연속형 분포로부터 얻은 독립적인 p값들을 통합하는 Fisher의 고전적인 방법은 널리 사용되고 있지만 이산형 확률분포로부터 얻은 p값들을 통합하기에는 적절하지 않다. 대신에 유사 Fisher의 통합방법이 이산형 확률분포의 p값들을 통합하는 대안으로 사용된다. 본 논문에서는 첫째, 여러 표본들의 위치검정(Fisher-Pitman 검정과 Kruskal-Wallis 검정) 데이터와 관련된 이산형 확률분포로 부터 퍼뮤테이션 방법에 의해 p값들을 구하고, 둘째로 이 p값들을 유사 Fisher의 통합방법을 이용하여 통합한다. 그리고 Fisher의 고전적인 방법과 유사 Fisher의 통합방법의 결과를 비교한다.

Keywords

References

  1. I. H. Tippett, The methods of statistics, Williams and Norgate, London, 1931.
  2. R. A. Fisher, "Statistical methods for research workers", (5th ed.) Edinburgh, Scot.: Oliver & Boyd, 1934.
  3. S. A. Stouffer, E. A. Suchman, L. C. DeVinney, S. A. Star, and R. M. William, The American Soldier, Adjustment During Army Life, Princeton Univ. Press, Princeton, 1949.
  4. B. Wilkinson, "A Statistical Considerration in Psychological Research", Psychological Bull, 48, 156-158, 1951. https://doi.org/10.1037/h0059111
  5. C. E. Lunneborg, "Analysis by resampling: concepts and applications". Pacific Grove, CA: Duxbury, 2000.
  6. E. S. Edington, "An additive model for combining probability values from independent experiments", Journal of Psychology, 80, 351-363, 1972. https://doi.org/10.1080/00223980.1972.9924813
  7. R. J. Simes, "An improved Bonferroni procedure for multiple tests of significance", Biometrics, 73, 751-754, 1986. https://doi.org/10.1093/biomet/73.3.751
  8. E. Pesarin, "Multivariate permutation tests: with applications in biostatistics", Chichester, UK: Wiley, 2001.
  9. D. Zaykin, L. Zhivotovsky, P. H. Westfall, and B. S. Weir, "Truncated product method for combining p-values", Genetic Epidemiology, 22, 170-185, 2002. https://doi.org/10.1002/gepi.0042
  10. J. T. Kost and M. P. McDermott, "Combining dependent P-values", Statistics & Probability Letters, 60, 183-190, 2002. https://doi.org/10.1016/S0167-7152(02)00310-3
  11. J. Seon and D. Kim, "New Method for Combining P-values in Metha-Analysis", The Korean Journal of Applied Statistics, 26, 5, 797-806, 2013. https://doi.org/10.5351/KJAS.2013.26.5.797
  12. P. W. Jr. Mielke, J. E. Johnston and K. J. Berry, "Combining probability value from independent permutation tests: a discrete analog of Fisher's classical method", Psychological Reports, 95, 449-458, 2004. https://doi.org/10.2466/PR0.95.6.449-458
  13. R. A. Fisher, A design of experiment, Oliver & Boyd, Edinburgh, 1935.
  14. P. W. Jr. Mielke, J. E. Johnston and K. J. Berry, "Comparisons of continuous and discrete methods for combining probability values associated with matched-pairs t-test data", 100, 799-805, 2005. https://doi.org/10.2466/pms.100.3.799-805
  15. Y. H. Um, "Combining independent permutation p Values associated with Mann-Whitney test data", Journal of the Korean Society of Computer and Information, 23, 7, 99-104, 2018.
  16. K. J. Berry and P. W. Mielke, "The Fisher-Pitman Permutation Test: An Alternative to the F Test", Psychological Reports, 90, 495-502, 2002. https://doi.org/10.2466/PR0.90.2.495-502
  17. G. W. Corder, and D. I. Foreman. Nonparametric Statistics for Non-Statisticians. Hoboken: John Wiley & Sons. pp. 99-105, 2009.
  18. W. M. Kincaid, "The combination of tests based on discrete distributions", Journal of the American Statistical Association, 57, 10-19, 1962. https://doi.org/10.1080/01621459.1962.10482147
  19. P. W. Mielke Jr. and K. J. Berry, Permutation methods: a distance function approach. (2nd ed.) New York: Springer-Verlag, 2007.