DOI QR코드

DOI QR Code

A Czochralski Process Design for Si-single Crystal O2 Impurity Minimization with Pulling Rate, Rotation Speed and Melt Charge Level Optimization

Pulling rate, rotation speed 및 melt charge level 최적화에 의한 쵸크랄스키 공정 실리콘 단결정의 O2 불순물 최소화 설계

  • Received : 2020.03.04
  • Accepted : 2020.04.07
  • Published : 2020.08.01

Abstract

Most mono-crystalline silicon ingots are manufactured by the Czochralski (Cz) process. But If there are oxygen impurities, These Si-ingot tends to show low-efficiency when it is processed to be solar cell substrate. For making single-crystal Si- ingot, We need Czochralski (Cz) process which melts molten Si and then crystallizing it with seed of single-crystal Si. For melts poly Si-chunk and forming of single-crystalline Si-ingot, the heat transfer plays a main role in the structure of Cz-process. In this study to obtain high-quality Si ingot, the Cz-process was modified with the process design. The crystal growth simulation was employed with pulling rate and rotation speed optimization. Studies for modified Cz-process and the corresponding results have been discussed. The results revealed that using crystal growth simulation, we optimized the oxygen concentration of single crystal silicon by the optimal design of the pulling rate, rotation speed and melt charge level of Cz-process.

대부분의 단결정 실리콘 잉곳은 초크랄스키(Czochralski(Cz)) 공정으로 제조된다. 그러나 단결정 실리콘 잉곳을 제품화 및 태양 전지 기판으로 가공하였을 때 산소 불순물이 있는 경우 낮은 효율성을 나타내는 경향이 있다. 단결정 Si-잉곳의 생산을 위해서는 용융 Si를 녹인 다음 단결정 Si의 시드(Seed)로 결정화하는 초크랄스키(Cz) 공정을 도입한다. 용융된 다결정 Si-덩어리를 단결정 Si-잉곳으로 결정성장 될 때, 열 전달은 Cz-공정의 구조에서 중요한 역할을 한다. 본 연구에서 고품질 단결정 실리콘 잉곳을 얻기 위해 Cz-공정의 최적화된 설계를 구성하였다. 결정 성장 시뮬레이션로부터 결정성장을 위한 Pulling rate 및 Rotation speed에 최적의 변수값을 형성하기 위해 사용되었으며, 변형된 Cz-공정에 대한 연구 및 해당 결과가 논의되며 결정 성장 시뮬레이션을 사용하여 Cz-공정의 Pulling rate, Rotation speed 및 Melt charge level의 최적화된 설계로 인한 결정성장시 단결정 실리콘으로 유입되는 산소 농도 최소화를 설계하였다.

Keywords

References

  1. Wang, C., "A Continuous Czochralski Silicon Crystal Growth System," Journal of Crystal Growth, 250(4), 209-214(2003). https://doi.org/10.1016/S0022-0248(02)02241-8
  2. Kulkarni, M. S., Holzer, J. C. and Ferry, L. W., "The Agglomeration Dynamics of Self-interstitials in Growing Czochralski Silicon Crystals", Journal of Crystal Growth, 284(3), 35-368(2005).
  3. Vorob'ev, A., Sid'ko, A. and Kalaev, V., "Advanced Chemical Model for Analysis of cz and ds si-crystal Growth," Journal of Crystal Growth, 386(2), 226-234(2014). https://doi.org/10.1016/j.jcrysgro.2013.10.022
  4. Voronkov, V. V. and Flaster, R., "Intrinsic Point Defects and Impurities in Silicon Crystal Growth," J. Electrochem. Soc., 149(3), 167(2002).
  5. Ammon, W., Dornberger, E., Oelkrug, H. and Weidner, H., "The Dependence of Bulk Defects on the Axial Temperature Gradient of Silicon Crystals During Czochralski Growth," Journal of Crystal Growth, 151, 273(1995). https://doi.org/10.1016/0022-0248(95)00063-1
  6. Kim, J. H., "A Study on Dynamic Heat Flux for 450 mm Single Crystal Silicon Growth under Magnetic Fields," Hanyang University Master's Thesis(2007).
  7. von Ammon, W., Friedrich, J., Muller, G., "Czochralski Growth of Silicon Crystals," T. Nishinaga, P. Rudolph, T. Kuech (Eds.), Handbook of Crystal Growth (second ed.), Elsevier, 45-104(2014).
  8. Ammon, W. V., Gelfgat, Y., Gorbunov, L., Muehlbauer, A., Muiznieks, A., Makarov, Y., Virbulis, J. and Muller, G., "Proceedings of 6th PAMIR International Conference on Fundamental and Applied MHD," 41(2005).
  9. Hwang, D. H., "Oxygen Precipitation Behavior Related on Point Defects in CZ Si Single Crystal," Doctor's Thesis, Dept. Material Eng., Chungnam National Univ., Daejeon, Korea(2002).
  10. Kim, J. H., "Study of Oxygen Behavior on Single Silicon Crystal Growth in Czochralski Method," Master's Thesis, Dept. Material Eng., Sungkunkwan Univ., Seoul, Korea(2007).
  11. Lee, J. S. and Kim, K. H., Solar Cell Engineering, Seoul, Korea: Book Publication in GREEN Energy(2007).
  12. Sim, B. C., Kim, W. S. and Zebib, A., "Thermocapillary Convection in Liquid Bridges with Undeformable Curved Surfaces," Journal of Thermophys Heat Transfer, 16, 553-561(2002). https://doi.org/10.2514/2.6715
  13. Sim, B. C., Kim, W. S. and Zebib, A., "Axisymmetric Thermocapillary Convection in Cylindrical Liquid Bridges and Annuli CR Mecanique," Journal of Heat Mass Transfer, 332, 473-486(2004).
  14. Rozgonyi, G. A., Deysher, R. P. and Pearce, C. W., "Silicon Materials Science and Technology," J. Electrochem. Soc., 123, 1910 (1976). https://doi.org/10.1149/1.2132722
  15. Shockley, W., Read, W. T. Jr., "Statistics of the Recombination of Holes and Electrons," Phys. Rev., 87, 835-843(1952). https://doi.org/10.1103/PhysRev.87.835
  16. Lee, Y. R. and Jung, J. H., "Research for High Quality Ingot Production in Large Diameter Continuous Czochralski Method," Photovoltaic Research, 4(3), 124-129(2016). https://doi.org/10.21218/CPR.2016.4.3.124
  17. Shockley, W. and Read, Jr. W. T., "Statistics of the Recombination of Holes and Electrons," Physical Review Journals, 87, 835-843(1952). https://doi.org/10.1103/PhysRev.87.835
  18. Kalaev, V. V. et al. "Calculation of Bulk Defects in CZ Si Growth: Impact of Melt Turbulent Fluctuations," Journal of Crystal Growth, 250(2), 203-208(2003). https://doi.org/10.1016/S0022-0248(02)02240-6
  19. Kakimoto, K., Eguchi, M., Watanabe, H. and Hibiya, T., "Ordered structure in Non-axisymmetric Flow of Silicon Melt Convection," Journal of Crystal Growth., 126, 435-440(1993). https://doi.org/10.1016/0022-0248(93)90048-2

Cited by

  1. Optimal Magnetic Graphite Heater Design for Impurity Control in Single-Crystal Si Grower Using Crystal Growth Simulation vol.10, pp.1, 2020, https://doi.org/10.3390/pr10010070