DOI QR코드

DOI QR Code

Process Design and Economics for Conversion of Kenaf to Syngas

케나프 기반 합성가스 생산을 위한 공정 설계 및 경제성 평가

  • Byun, Jaewon (School of Chemical Engineering, Jeonbuk National University) ;
  • Park, Hoyoung (School of Chemical Engineering, Jeonbuk National University) ;
  • Kang, Dongseong (School of Chemical Engineering, Jeonbuk National University) ;
  • Kwon, Oseok (School of Chemical Engineering, Jeonbuk National University) ;
  • Han, Jeehoon (School of Chemical Engineering, Jeonbuk National University)
  • Received : 2020.02.25
  • Accepted : 2020.04.30
  • Published : 2020.08.01

Abstract

Syngas can be used as raw material for chemical and fuel production. Currently, many studies on syngas production from gasification of biomass have been conducted. Kenaf is a promising renewable resource with high productivity and CO2 immobilization. This study developed a large-scale kenaf gasification process based on the experimental data, and evaluated the techno-economic feasibility, which consists of three steps (integrated process design, heat exchanger network design, techno-economic assessment). The minimum selling price of syngas is US$ 9.55/GJ, and it is lower than current market price of syngas.

합성가스는 화학제품 및 수송연료의 원료로 이용되며, 최근 목질계 바이오매스의 가스화를 통한 합성가스 생산기술에 대한 연구가 다수 진행되었다. 케나프는 높은 생산성과 이산화탄소 흡수율을 가지는 목질계 바이오매스로 이산화탄소 저감을 위한 대체자원으로서 활용 가능성이 높다. 본 연구는 케나프 가스화 실험연구 데이터를 바탕으로 상용 수준의 케나프 가스화 공정을 개발하고, 해당 공정의 타당성 및 실현가능성을 평가하는 연구로서, 케나프 가스화 통합공정 설계, 열교환망 설계, 기술경제성 평가로 구성된다. 개발된 공정으로부터 생산되는 합성가스의 최소판매가격은 1 GJ당 9.55 달러로, 합성가스의 시장가격보다 낮은 것을 확인하였다.

Keywords

References

  1. Kojima, Y., et al., Kenaf as Bioresource for Production of Hydrogen-rich Gas. Agrotechnology, 3(1), 125(2014).
  2. Saba, N., et al., Potential of Bioenergy Production from Industrial Kenaf (Hibiscus cannabinus L.) Based on Malaysian Perspective. Renewable and Sustainable Energy Reviews, 42, 446-459(2015). https://doi.org/10.1016/j.rser.2014.10.029
  3. Lee, C.-K., et al., Preparation and Physical Properties of the Biocomposite, Cellulose Diacetate/kenaf Fiber Sized with Poly (vinyl alcohol). Macromolecular Research, 18(6), 566-570(2010). https://doi.org/10.1007/s13233-010-0611-0
  4. Aranda, G., et al., Comparing Direct and Indirect Fluidized Bed Gasification: Effect of Redox Cycle on Olivine Activity. Environmental Progress & Sustainable Energy, 33(3), 711-720(2014). https://doi.org/10.1002/ep.12016
  5. Kaisalo, N., Tar Reforming in Biomass Gasification gas Cleaning(2017).
  6. AlNouss, A., et al., Techno-economic and Sensitivity Analysis of Coconut Coir Pith-biomass Gasification Using ASPEN PLUS. Applied Energy, 261, 114350(2020). https://doi.org/10.1016/j.apenergy.2019.114350
  7. Mehrpooya, M., Khalili, M. and Sharifzadeh, M. M. M. Model Development and Energy and Exergy Analysis of the Biomass Gasification Process (Based on the Various Biomass Sources). Renewable and Sustainable Energy Reviews, 91, 869-887(2018). https://doi.org/10.1016/j.rser.2018.04.076
  8. Formica, M., Frigo, S. and Gabbrielli, R., Development of a New Steady State Zero-dimensional Simulation Model for Woody Biomass Gasification in a Full Scale Plant. Energy conversion and management, 120, 358-369(2016). https://doi.org/10.1016/j.enconman.2016.05.009
  9. Kang, C.-H., et al., Development of Paddy Field Culture Techniques and Elevate the Energy Density of Biomass Kenaf (Hibiscus cannabinus L.). Jeollabuk-do Agricultural Research and Extension Service, Iksan (Korea) (2016).
  10. Dutta, A., et al., Techno Economics for Conversion of Lignocellulosic Biomass to Ethanol by indirect Gasification and Mixed Alcohol Synthesis. Environmental Progress & Sustainable Energy, 31(2), 182-190(2012). https://doi.org/10.1002/ep.10625
  11. Li, P., Process Design and Simulation of Producing Liquid Transportation Fuels from Biomass(2017).
  12. Dutta, A., et al., Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis. National Renewable Energy Lab.(NREL), Golden, CO (United States) (2011).
  13. Darrow, K., et al., Catalog of CHP technologies. US Environmental Protection Agency, Washington, DC, p. 5-6(2015).
  14. Phillips, S., et al., Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol synthesis of Lignocellulosic Biomass. National Renewable Energy Lab.(NREL), Golden, CO (United States) (2007).
  15. Rauch, R., J. Hrbek, and H. Hofbauer, Biomass Gasification for Synthesis Gas Production and Applications of the Syngas. Advances in Bioenergy: The Sustainability Challenge, 3, 73-91(2015).
  16. Verbeeck, K., et al., Upgrading the Value of Anaerobic Digestion via Chemical Production from Grid Injected Biomethane. Energy & Environmental Science, 11(7), 1788-1802(2018). https://doi.org/10.1039/C8EE01059E