참고문헌
- Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput. Aid. Civil Infrastr. Eng., 16(2), 126-142. https://doi.org /10.1111/0885-9507.00219.
- Adeli, H. and Yeh, C. (1989) "Perceptron learning in engineering design", Comput. Aid. Civil Infrastr. Eng., 4(4), 247-256. https://doi.org/10.1111/j.1467-8667.1989.tb00026.x.
- Afroughsabet, V. and Ozbakkaloglu, T. (2015), "Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers", Constr. Build. Mater., 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051.
- Al-Saleh, M.H. and Sundararaj, U. (2011), "Review of the mechanical properties of carbon nanofiber/polymer composites", Compos. Part A: Appl. Sci. Manuf., 42(12), 2126-2142. https://doi.org/10.1016/j.compositesa.2011.08.005.
- Al-Taan, S.A., Al-Rifaie, W.N. and Al-Neimee, K.A. (2016), "Properties of fresh and hardened high strength steel fibers reinforced self-compacted concrete", Proceedings of the 4th International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA,. August.
- Alberti, M.G., Enfedaque, A. and Galvez, J.C. (2017), "Fibre reinforced concrete with a combination of polyolefin and steel-hooked fibres", Compos. Struct., 171, 317-325. https://doi.org/10.1016/j.compstruct.2017.03.033.
- Babafemi, A.J. and Boshoff, W.P. (2015), "Tensile creep of macro-synthetic fibre reinforced concrete (MSFRC) under uni-axial tensile loading", Cement Concrete Compos., 55, 62-69. https://doi.org/10.1016/j.cemconcomp.2014.08.002.
- Buenfeld, N.R. and Hassanein, N.M. (1998), "Predicting the life of concrete structures using neural networks", Proc. Inst. Civil Eng. Struct. Build., 128(1), 38-48. https://doi.org/10.1680/istbu.1998.30033.
- Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Constr. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063.
- Fathima, A. and Varghese, S. (2014), "Behavioural study of steel fiber and polypropylene fiber reinforced concrete", Int. J. Res. Eng. Technol., 2(10), 17-24. https://doi.org/10.4028/www.scientific.net/KEM.708.59.
- Frazao, C., Camoes, A., Barros, J. and Goncalves, D. (2015), "Durability of steel fiber reinforced self-compacting concrete", Constr. Build. Mater., 80, 155-166. https://doi.org/10.1016/j.conbuildmat.2015.01.061.
- Fritih, Y., Vidal, T., Turatsinze, A. and Pons, G. (2013), "Flexural and shear behavior of steel fiber reinforced SCC beams", KSCE J. Civil Eng., 17(6), 1383-1393. https://doi.org/10.1007/s12205-013-1115-1.
- Ganesan, N., Indira, P.V. and Irshad, P. (2017), "RCC frames with ferrocement and fiber reinforced concrete infill panels under reverse cyclic loading", Adv. Concrete Constr., 5(3), 257-270. https://doi.org/10.12989/acc.2017.5.3.257.
- Garg, A., Ruhatiya, C., Cui, X., Peng, X., Bhalerao, Y. and Gao, L. (2019), "A novel approach for enhancing thermal performance of battery modules based on finite element modelling and predictive model-ling mechanism", J. Electrochem. Energy Convers. Storage, 17(2), 021103. https://doi.org/10.1115/1.4045194.
- Georgy, M.E., Chang, L. and Zhang, L. (2005), "Prediction of engineering performance: a neurofuzzy approach", J. Constr. Eng. Manage., ASCE, 131(5), 548-557. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:5(548).
- Gholizadeh, S. (2015), "Performance-based optimum seismic design of steel structures by a modified firefly algorithm and a new neural network", Adv. Eng. Softw., 81, 50-65. https://doi.org/10.1016/j.advengsoft.2014.11.003.
- Gupta, R., Kewalramani, M.A. and Goel, A. (2006), "Prediction of concrete strength using neural-expert system", J. Mater. Civil Eng., 18(3), 462-466. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(462).
- Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice Hall, New York, NY, USA.
- Holschemacher, K., Mueller, T. and Ribakov, Y. (2010), "Effect of steel fibers on mechanical properties of high-strength concrete", Mater. Des., 31(5), 2604-2615. https://doi.org/10.1016/j.matdes.2009.11.025.
- Kasperkiewicz, J., Racz, J.W. and Dubrawski, A. (1995), "HPC strength prediction using artificial neural network", J. Comput. Civil Eng., 9(4), 279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279).
- Lee, J.H. (2017), "Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete", Compos. Struct., 168, 216-225. https://doi.org/10.1016/j.compstruct.2017.01.052.
- Lee, J.H., Cho, B. and Choi, E. (2017), "Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content", Constr. Build. Mater., 138, 222-231. https://doi.org/10.1016/j.conbuildmat.2017.01.096.
- Li, J., Dackermann, U., Xu, Y. and Samali, B. (2011), "Damage identification in civil engineering structures utilizing PCA-compressed residual frequency response functions and neural network ensembles", Struct. Control Hlth. Monit., 18(2), 207-226. https://doi.org/10.1002/stc.369.
- Marar, K., Eren, O. and Roughani, H. (2017), "The influence of amount and aspect ratio of fibers on shear behaviour of steel fiber reinforced concrete", KSCE J. Civil Eng., 21(4), 1393-1399. https://doi.org/10.1007/s12205-016-0787-2.
- Memarian, H. and Balasundram, S.K. (2012), "Comparison between multi-layer perceptron and radial basis function networks for sediment load estimation in a tropical watershed", J. Water Res. Protect., 4(10), 870-876. http://dx.doi.org/10.4236/iwarp.2012.410102.
- Nagananda, V., Dattatreya, J.K. and Suresh, S. (2015), "Study on compressive behavior of steel fiber reinforced concrete", J. Civil Eng. Environ. Technol., 2(11), 37-40. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000372.
- Olivito, R.S. and Zuccarello, F.A. (2010), "An experimental study on the tensile strength of steel fiber reinforced concrete", Compos. Part B: Eng., 41(3), 246-255. https://doi.org/10.1016/j.compositesb.2009.12.003.
- Panda, B., Paul, S.C. and Tan, M.J. (2017), "Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material", Mater. Lett., 209, 146-149. https://doi.org/10.1016/j.matlet.2017.07.123.
- Paul, S.C. and van Zijl, G.P.A.G. (2016), "Chloride-induced corrosion modelling of cracked reinforced SHCC", Arch. Civil Mech. Eng., 16(4), 734-742. https://doi.org/10.1016/j.acme.2016.04.016.
- Paul, S.C., Panda, B. and Garg, A. (2018), "A novel approach in modelling of concrete made with recycled aggregates", Measure., 115, 64-72. https://doi.org/10.1016/j.measurement.2017.10.031.
- Perera, R., Barchin, M., Arteaga, A. and Diego, A.D. (2010), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B: Eng., 41(4), 287-298. https://doi.org/10.1016/j.compositesb.2010.03.003.
- Ponikiewski, T., Golaszewski, J., Rudzki, M. and Bugdol, M. (2015), "Determination of steel fibres distribution in self-compacting concrete beams using X-ray computed tomography", Arch. Civil Mech. Eng., 15(2), 558-568. https://doi.org/10.1016/j.acme.2014.08.008.
- Sarbini, N.N., Ibrahim, I.S. and Saim, A.A. (2011), "Enhancement on strength properties of steel fibre reinforced concrete", Proceedings of the 3rd European Asian Civil Engineering Forum, Yogyakarta, Indonesia, September.
- Saridemir, M. (2009), "Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks", Adv. Eng. Softw., 40(5), 350-355. https://doi.org/10.1016/j.advengsoft.2008.05.002.
- Soylev, T.A. and Ozturan, T. (2013), "Strength and fracture toughness of fiber reinforced concrete", Proceedings of 2nd International Conference on Smart Monitoring, Assessment and Rehabilitations of Civil Structures, Istanbul, Turkey, September.
- Stephens, J. and Vanluchene, R.D. (1994), "Integrated assessment of seismic damage in structures", Comput. Aid. Civil Infrastr. Eng., 9(2), 119-128. https://doi.org/10.1111/j.1467-8667.1994.tb00367.x.
- Tanoli, W.A., Naseer, A. and Wahab, F. (2014), "Effect of steel fibers on compressive and tensile strength of concrete", Int. J. Adv. Struct. Geotech. Eng., 3(4), 393-397.
- Vairagade, V.S. and Kene, K.S. (2013), "Strength of normal concrete using metallic and synthetic fibers", Procedia Eng., 51, 132-140. https://doi.org/10.1016/j.proeng.2013.01.020.
- Woo, S.K., Kim, K.J. and Han, S.H. (2014), "Tensile cracking constitutive model of Steel Fiber Reinforced Concrete (SFRC)", KSCE J. Civil Eng., 18(5), 1446-1454. https://doi.org/10.1007/s12205-014-0335-3.
- Yazici, S., Inan, G. and Tabak, V. (2007), "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build. Mater., 21(6), 1250-125. https://doi.org/10.1016/j.conbuildmat.2006.05.025.
- Yehia, S., Douba, A., Abdullahi, O. and Farrag, S. (2016), "Mechanical and durability evaluation of fiber-reinforced self-compacting concrete", Constr. Build. Mater., 121, 120-133. https://doi.org/10.1016/j.conbuildmat.2016.05.127.
- Yi, T., Li, H. and Sun, H. (2013), "Multi-stage structural damage diagnosis method based on "energy-damage" theory", Smart Struct. Syst., 12(3-4), 345-361. https://doi.org/10.12989/sss.2013.12.3_4.345.
- Yoo, D.Y., Banthia, N., Kang, S.T. and Yoon, Y.S. (2016), "Effect of fiber orientation on the rate-dependent flexural behavior of ultra-high-performance fiber-reinforced concrete", Compos. Struct., 157, 62-70. https://doi.org/10.1016/j.compstruct.2016.08.023.
- Yoo, D.Y., Yoon, Y.S. and Banthia, N. (2015), "Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate", Cement Concrete Compos., 64, 84-92. https://doi.org/10.1016/j.cemconcomp.2015.10.001.
- Zhang, Z.H., Liu, X., Zhang, Y., Zhou, M.L. and Chen, J.G. (2020), "Time interval of multiple crossings of the Wiener process and a fixed threshold in engineering", Mech. Syst. Signal Pr., 135, 106389. https://doi.org/10.1016/j.ymssp.2019.106389.
- Zhang, Z.H., Zhou, M.L. and Fang, M. (2019), "First-passage probability analysis of Wiener process using different methods and its applications in the evaluation of structural durability degradation", Eur. J. Environ. Civil Eng., 1-19. https://doi.org/10.1080/19648189.2019.1601134.
- Ziolkowski, P. and Niedostatkiewicz, M. (2019), "Machine learning techniques in concrete mix design", Mater., 12(8), 1256. https://doi.org/10.3390/ma12081256.