DOI QR코드

DOI QR Code

Discrepancies between Mitochondrial DNA and AFLP Genetic Variation among Lineages of Sea Slaters Ligia in the East Asian Region

  • Received : 2020.08.19
  • Accepted : 2020.10.06
  • Published : 2020.10.31

Abstract

Although sea slaters Ligia have a significant role in rocky shore habitats, their taxonomic entities have not been clearly understood. In this study, we investigated whether genetic variation inferred from a nuclear genetic marker, namely amplified fragment length polymorphism (AFLP), would conform to that of a mitochondrial DNA marker. Using both the mitochondrial DNA marker and the AFLP marker amplified by the six selective primer sets, we analyzed 95 Ligia individuals from eight locations from East Asia. The direct sequencing of mitochondrial 16S rRNA gene revealed three distinct genetic lineages, with 9.8-11.7 Kimura 2-parameter genetic distance. However, the results of AFLP genotyping analysis with 691 loci did not support those of mitochondrial DNA, and revealed an unexpectedly high proportion of shared polymorphisms among lineages. The inconsistency between the two different genetic markers may be explained by difference in DNA evolutionary history, for example inheritance patterns, effective population size, and mutation rate. The other factor is a possible genomic island of speciation, in that most of the genomic parts are shared among lineages, and only a few genomic regions have diverged.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No. 2017R1D1A2B04033088).

References

  1. Alquezar DE, Hemmerter S, Cooper RD, Beebe NW, 2010. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. BMC Evolutionary Biology, 10:392. https://doi.org/10.1186/1471-2148-10-392
  2. Avise JC, 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA, pp. 1-447.
  3. Bensch S, Akesson M, 2005. Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology, 14:2899-2914. https://doi.org/10.1111/j.1365-294X.2005.02655.x
  4. Caballero A, Garcia-Pereira MJ, Quesada H, 2013. Genomic distribution of AFLP markers relative to gene locations for different eukaryotic species. BMC Genomics, 14:528. https://doi.org/10.1186/1471-2164-14-528
  5. Coyne JA, Orr HA, 2004. Speciation. Sinauer Associates, Sunderland, MA, pp. 1-545.
  6. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML, 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12:499-510. https://doi.org/10.1038/nrg3012
  7. Eberl R, Mateos M, Grosberg RK, Santamaria CA, Hurtado LA, 2013. Phylogeography of the supralittoral isopod Ligia occidentalis around the Point Conception marine biogeographical boundary. Journal of Biogeography, 40:2361-2372. https://doi.org/10.1111/jbi.12168
  8. Egger B, Koblmuller S, Sturmbauer C, Sefc KM, 2007. Nuclear and mitochondrial data reveal different evolutionary processes in the Lake Tanganyika cichlid genus Tropheus. BMC Evolutionary Biology, 7:137. https://doi.org/10.1186/1471-2148-7-137
  9. Excoffier L, Lischer HEL, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10:564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  10. Hurtado LA, Mateos M, Santamaria CA, 2010. Phylogeography of supralittoral rocky intertidal Ligia isopods in the Pacific region from central California to central Mexico. PLoS ONE, 5:e11633. https://doi.org/10.1371/journal.pone.0011633
  11. Hurtado LA, Mateos M, Wang C, Santamaria CA, Jung J, Khalaji-Pirbalouty V, Kim W, 2018. Out of Asia: mitochondrial evolutionary history of the globally introduced supralittoral isopod Ligia exotica. PeerJ, 6:e4337. https://doi.org/10.7717/peerj.4337
  12. Jung J, 2013. Population genetic structure of Carassius auratus (Pisces: Cypriniformes) in South Korea inferred from AFLP markers: discordance with mitochondrial genetic structure. Animal Systematics Evolution and Diversity, 29:18-22. https://doi.org/10.5635/ASED.2013.29.1.18
  13. Jung J, Eo HS, Rho HS, Kim W, 2008. Two genetic lineages of sea slaters, Ligia (Crustacea: Isopoda) in South Korea: a population genetic approach. Molecules and Cells, 25:523-530.
  14. Jung J, Han H, Ryu SH, Kim W, 2010. Amplified fragment length polymorphism analysis and genetic variation of the pinewood nematode Bursaphelenchus xylophilus in South Korea. Animal Cells and Systems, 14:31-36. https://doi.org/10.1080/19768351003770889
  15. Jung J, Lee JW, Kim JP, Kim W, 2006. Genetic variations of the golden orb-web spider Nephila clavata (Araneae: Tetragnathidae) in Korea, using AFLP markers. Korean Journal of Genetics, 28:325-332.
  16. Koblmuller S, Duftner N, Sefc KM, Aibara M, Stipacek M, Blanc M, Egger B, Sturmbauer C, 2007. Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika: the result of repeated introgressive hybridization. BMC Evolutionary Biology, 7:7. https://doi.org/10.1186/1471-2148-7-7
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG, 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23:2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  18. Leache AD, 2011. Multi-locus estimates of population structure and migration in a fence lizard hybrid zone. PLoS One, 6:e25827. https://doi.org/10.1371/journal.pone.0025827
  19. Lee JD, 1994. A new mountain slater, Ligia taiwanensis (Isopoda, Ligiidae) from Taiwan. Crustaceana, 66:110-115. https://doi.org/10.1163/156854094X00198
  20. Markow TA, Pfeiler E, 2010. Mitochondrial DNA evidence for deep genetic divergences in allopatric populations of the rocky intertidal isopod Ligia occidentalis from the eastern Pacific. Molecular Phylogenetics and Evolution, 56:468-473. https://doi.org/10.1016/j.ympev.2009.12.002
  21. Meudt HM, Clarke AC, 2007. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends in Plant Science, 12:106-117. https://doi.org/10.1016/j.tplants.2007.02.001
  22. Mueller UG, Wolfenbarger LL, 1999. AFLP genotyping and fingerprinting. Trends in Ecology and Evolution, 14:389-394. https://doi.org/10.1016/S0169-5347(99)01659-6
  23. Nosil P, Schluter D, 2011. The genes underlying the process of speciation. Trends in Ecology and Evolution, 26:160-167. https://doi.org/10.1016/j.tree.2011.01.001
  24. Nunomura N, 1979. Ligia boninensis, a new isopod crustacean from Haha-jima, Bonin Islands, Japan. Bulletin of the Toyama Science Museum, 1:37-40.
  25. Nunomura N, 1983. Studies on the terrestrial isopod crustaceans in Japan. I. Taxonomy of the families Ligiidae, Trichoniscidae, and Olbrinidae. Bulletin of the Toyama Science Museum, 5:23-68.
  26. Nunomura N, 1990. Studies on the terrestrial isopod crustaceans in Japan. V. Taxonomy of the families Armadillidiidae, Armadillidae and Tylidae, with taxonomic supplements to some other families. Bulletin of the Toyama Science Museum, 13:1-58.
  27. Nunomura N, 1999. Sea shore isopod crustaceans collected from Izu Islands, Middle Japan. Bulletin of the Toyama Science Museum, 22:7-38.
  28. Nunomura N, Horiguchi H, Sasaki T, Hironaka M, Hariyama T, 2011. A new species of the genus Ligia (Crustacea: Isopoda: Ligiidae) from steep streams of Chichijima and Anijima Islands of the Ogasawara Islands. Bulletin of the Toyama Science Museum, 34:73-79.
  29. Orr HA, 2005. The genetic basis of reproductive isolation: insights from Drosophila. Proceeding of the National Academy of Sciences of the United States of America, 102:6522-6526. https://doi.org/10.1073/pnas.0501893102
  30. Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G, 1991. The simple fool's guide to PCR, version 2.0. University of Hawaii Press, Honolulu, HI, pp. 1-47.
  31. Peakall R, Smouse PE, 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28:2537-2539. https://doi.org/10.1093/bioinformatics/bts460
  32. Presgraves DC, 2007. Speciation genetics: epistasis, conflict and the origin of species. Current Biology, 17:R125-R127. https://doi.org/10.1016/j.cub.2006.12.030
  33. Rieseberg LH, Blackman BK, 2010. Speciation genes in plants. Annals of Botany, 106:439-455. https://doi.org/10.1093/aob/mcq126
  34. Sambrook J, Russell DW, 2001. Molecular cloning: a laboratory manual, Vol. 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  35. Santamaria CA, Mateos M, Taiti S, DeWitt TJ, Hurtado LA, 2013. A complex evolutionary history in a remote archipelago: phylogeography and morphometrics of the Hawaiian endemic Ligia isopods. PLoS One, 8:e85199. https://doi.org/10.1371/journal.pone.0085199
  36. Schmalfuss H, 2003. World catalog of terrestrial isopods(Isopoda: Oniscidea). Stuttgarter Beitrage zur Naturkunde Serie A, 654:1-341.
  37. Shaw KL, 2002. Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proceeding of the National Academy of Sciences of the United States of America, 99:16122-16127. https://doi.org/10.1073/pnas.242585899
  38. Smith TA, Mendelson TC, Page LM, 2011. AFLPs support deep relationships among darters (Percidae: Etheostomatinae) consistent with morphological hypotheses. Heredity, 107:579-588. https://doi.org/10.1038/hdy.2011.50
  39. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30:2725-2729. https://doi.org/10.1093/molbev/mst197s
  40. Tsuge M, 2008. A new species of the genus Ligia (Crustacea: Isopoda: Ligiidae) from the Lake Shinji (Shimane Prefecture), western Japan. Bulletin of the Toyama Science Museum, 31:51-57.
  41. Turner TL, Hahn MW, Nuzhdin SV, 2005. Genomic islands of speciation in Anopheles gambiae. PLoS Biology, 3:e285. https://doi.org/10.1371/journal.pbio.0030285
  42. Via S, 2012. Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-gene-flow. Philosophical Transactions of the Royal Society B, 367:451-460. https://doi.org/10.1098/rstb.2011.0260
  43. Via S, West J, 2008. The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Molecular Ecology, 17:4334-4345. https://doi.org/10.1111/j.1365-294X.2008.03921.x
  44. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23:4407-4414. https://doi.org/10.1093/nar/23.21.4407
  45. Wu CI, Ting CT, 2004. Genes and speciation. Nature Reviews in Genetics, 5:114-122. https://doi.org/10.1038/nrg1269
  46. Yin J, Pan D, He C, Wang A, Yan J, Sun H, 2013. Morphological and molecular data confirm species assignment and dispersal of the genus Ligia (Crustacea: Isopoda: Ligiidae) along northeastern coastal China and East Asia. Zoological Journal of the Linnean Society, 169:362-376. https://doi.org/10.1111/zoj.12068