DOI QR코드

DOI QR Code

On determining seismic anchor force of anchoring frame structure supporting three-stage slope

  • Lin, Yu-liang (School of Civil Engineering, Central South University) ;
  • Lu, Li (School of Civil Engineering, Central South University) ;
  • Li, Ying-xin (School of Civil Engineering, Central South University) ;
  • Xue, Yuan (China Railway Eryuan Engineering Group Co. Ltd.) ;
  • Feng, Zhi-jun (China Railway Eryuan Engineering Group Co. Ltd.) ;
  • Wang, Zhi-meng (China Railway Eryuan Engineering Group Co. Ltd.) ;
  • Yang, Guo-lin (School of Civil Engineering, Central South University)
  • 투고 : 2020.03.03
  • 심사 : 2020.07.06
  • 발행 : 2020.08.10

초록

As a flexible supporting structure, the anchoring frame structure is widely adopted to support multistage slopes in high earthquake-intensity area for its effectiveness and practicality. The previous study indicates that the anchor of anchoring frame structure is the most likely to be damaged during earthquakes. It is crucial to determine the pull-out capacity of anchor against seismic force for the seismic design of anchoring frame structure. In this study, an analytical model of a three-stage slope supported by anchoring frame structure is established, and the upper bound method of limit analysis is applied to deduce the seismic anchor force of anchoring frame structure. The pull-out capacity of anchor against seismic force of anchoring frame structure at each stage is obtained by computer programming. The proposed method is proved to be reasonable and effective compared with the existing published solution. Besides, the influence of main parameters on the pull-out capacity of anchor against seismic force is analyzed to provide some recommendations for the seismic design of anchoring frame structure.

키워드

과제정보

The authors sincerely acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51878667, 51678571, 51308551), and the Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ2517). The first author gratefully acknowledges the financial support from China Scholarship Council (Grant No. 201806375024). The authors also acknowledge the helpful comments on this paper from anonymous reviewers.

참고문헌

  1. Aminpoor, M.M. and Ghanbari, A. (2014), "Design charts for yield acceleration and seismic displacement of retaining walls with surcharge through limit analysis", Struct. Eng. Mech., 52(6), 1225-1256. https://doi.org/10.12989/sem.2014.52.6.1225.
  2. Aminpour, M.M., Maleki, M. and Ghanbari, A. (2017), "Investigation of the effect of surcharge on behavior of soil slopes", Geomech. Eng., 13(4), 653-669. https://doi.org/10.12989/gae.2017.13.4.653.
  3. Anastasopoulos, I., Georgarakos, T., Georgiannou, V., Drosos, V. and Kourkoulis, R. (2010), "Seismic performance of bar-mat reinforced-soil retaining wall: Shaking table testing versus numerical analysis with modified kinematic hardening constitutive model", Soil Dyn. Earthq. Eng., 30(10), 1089-1105. https://doi.org/10.1016/j.soildyn.2010.04.020.
  4. Baker, R., Shukha, R., Operstein, V. and Frydman, S. (2006), "Stability charts for pseudo-static slope stability analysis", Soil Dyn. Earthq. Eng., 26(9), 813-823. https://doi.org/10.1016/j.soildyn.2006.01.023.
  5. Bi, J., Luo, X., Zhang, H. and Shen, H. (2019), "Stability analysis of complex rock slopes reinforced with prestressed anchor cables and anti-shear cavities", B. Eng. Geol. Environ., 78(3), 2027-2039. http://doi.org/10.1007/s10064-017-1171-8.
  6. Biondi, G., Cascone, E. and Maugeri, M. (2014), "Displacement versus pseudo-static evaluation of the seismic performance of sliding retaining walls", B. Earthq. Eng., 12(3), 1239-1267. https://doi.org/10.1007/s10518-013-9542-4.
  7. Blanco-Fernandez, E., Castro-Fresno, D., Diaz, J.J.D. and Lopez-Quijada, L. (2011), "Flexible systems anchored to the ground for slope stabilisation: Critical review of existing design methods", Eng. Geol., 122(3-4), 129-145. https://doi.org/10.1016/j.enggeo.2011.05.014.
  8. Bray, J.D. and Travasarou, T. (2009), "Pseudostatic coeffificient for use in simplifified seismic slope stability evaluation", J. Geotech. Geoenviron. Eng., 135(9), 1336-1340. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000012.
  9. Cheng, X.S., Dowding, C.H. and Tian, R.R. (2014), "New methods of safety evaluation for rock/soil mass surrounding tunnel under earthquake", J. Cent. South Univ., 21(7), 2935-2943. https://doi.org/10.1007/s11771-014-2260-5.
  10. Du, W.Q. and Wang, G. (2016), "A one-step Newmark displacement model for probabilistic seismic slope displacement hazard analysis", Eng. Geol., 205, 12-23. https://doi.org/10.1016/j.enggeo.2016.02.011.
  11. Evirgen, B., Tuncan, A. and Tuncan, M. (2019), "Development of umbrella anchor approach in terms of the requirements of field application", Geomech. Eng., 18(3), 277-289. https://doi.org/10.12989/gae.2019.18.3.277.
  12. Greco, V.R. (2014), "Analytical solution of seismic pseudo-static active thrust acting on fascia retaining walls", Soil Dyn. Earthq. Eng., 57, 25-36. https://doi.org/10.1016/j.soildyn.2013.09.022.
  13. Gursoy, S. and Durmus, A. (2009), "Investigation of linear and nonlinear of behaviours of reinforced concrete cantilever retaining walls according to the earthquake loads considering soil-structures interactions", Struct. Eng. Mech., 31(1), 75-91. https://doi.org/10.12989/sem.2009.31.1.075.
  14. Huang, C.C. and Chen, Y.H. (2004), "Seismic stability of soil retaining walls situated on slope", J. Geotech. Geoenviron. Eng., 130(1), 45-57. http://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(45).
  15. Iskander, M., Chen, Z.B., Omidvar, M. and Guzman, I. (2013), "Rankine pseudo-static earth pressure for c-phi soils", Mech. Res. Commun., 51, 51-55. http://doi.org/10.1016/j.mechrescom.2013.04.010.
  16. Karray, M., Hussien, M.N., Delisle, M.C. and Ledoux, C. (2018), "Framework to assess pseudo-static approach for seismic stability of clayey slopes", Can. Geotech. J., 55(12), 1860-1876. https://doi.org/10.1139/cgj-2017-0383.
  17. Lee, M.G., Ha, J.G., Jo, S.B., Park, H.J. and Kim, D.S. (2017), "Assessment of horizontal seismic coefficient for gravity quay walls by centrifuge tests" Geotech. Lett., 7(2), 211-217. http://doi.org/10.1680/jgele.17.00005.
  18. Lee, J., Liu, Q. and Park, H.J. (2019), "Effect of earthquake motion on the permanent displacement of embankment slopes", KSCE J. Civ. Eng., 23(10), 4174-4189. http://doi.org/10.1007/s12205-019-1833-0.
  19. Lin, Y.L., Cheng, X.M., Yang, G.L. and Li, Y. (2018), "Seismic response of a sheet-pile wall with anchoring frame beam by numerical simulation and shaking table test", Soil Dyn. Earthq. Eng., 115, 352-364. http://doi.org/10.1016/j.soildyn.2018.07.028.
  20. Lin, Y.L., Li, Y.X., Yang, G.L. and Li, Y. (2017a), "Experimental and numerical study on the seismic behavior of anchoring frame beam supporting soil slope on rock mass", Soil Dyn. Earthq. Eng., 98, 12-23. http://doi.org/10.1016/j.soildyn.2017.04.008.
  21. Lin, Y.L., Li, Y.X., Zhao, L.H. and Yang, T.Y. (2020a), "Investigation on the seismic response of a three-stage soil slope supported by the anchor frame structure", J. Cent. South Univ., 27(4), 1290-1305. http://doi.org/10.1007/s11771-020-4367-1.
  22. Lin, Y.L., Lu, L. and Yang, G.L. (2020b), "Seismic behavior of a single-form lattice anchoring structure and a combined retaining structure supporting soil slope: A comparison", Environ. Earth Sci., 79(3), 78. https://doi.org/10.1007/s12665-020-8817-8.
  23. Lin, Y.L., Yang, G.L., Yang, X., Zhao, L.H., Shen, Q. and Qiu, M.M. (2017b), "Response of gravity retaining wall with anchoring frame beam supporting a steep rock slope subjected to earthquake loading", Soil Dyn. Earthq. Eng., 92, 633-649. http://doi.org/10.1016/j.soildyn.2016.11.002.
  24. Lin, Y.L., Zhao, L.H., Yang, T.Y., Yang, G.L. and Chen X.B. (2020c), "Investigation on seismic behavior of combined retaining structure with different rock shapes", Struct. Eng. Mech., 73(5), 599-612. http://doi.org/10.12989/sem.2020.73.5.599.
  25. Ling, H.I., Leshchinsky, D., Wang, J.P., Mohri, Y. and Rosen, A. (2009), "Seismic response of geocell retaining walls: Experimental studies", J. Geotech. Geoenviron. Eng., 135(4), 515-524. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(515).
  26. Motlagh, A.T., Ghanbari, A., Maedeh, P.A. and Wu, W. (2018), "A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes", Earthq. Struct., 15(6), 687-699. https://doi.org/10.12989/eas.2018.15.6.687.
  27. Nian, T.K., Jiang, J.C., Wang, F.W., Yang, Q. and Luan, M.T. (2016), "Seismic stability analysis of slope reinforced with a row of piles", Soil Dyn. Earthq. Eng., 84, 83-93. https://doi.org/10.1016/j.soildyn.2016.01.023.
  28. Nouri, H., Fakher, A. and Jones, C.J.F.P. (2008), "Evaluating the effects of the magnitude and amplification of pseudo-static acceleration on reinforced soil slopes and walls using the limit equilibrium horizontal slices method", Geotext. Geomembranes, 26(3), 263-278. https://doi.org/10.1016/j.geotexmem.2007.09.002.
  29. Ranjbar, K.A., Ganjian, N. and Askari, F.J. (2019), "Pseudo-static analysis of cantilever retaining walls using upper bound limit analysis approach", J. Cent. South Univ., 26(1), 241-255. https://doi.org/10.1007/s11771-019-3997-7.
  30. Shi, K.Y., Wu, X.P., Liu, Z. and Dai, S.L. (2019), "Coupled calculation model for anchoring force loss in a slope reinforced by a frame beam and anchor cables", Eng. Geol., 260, 105245. http://doi.org/10.1016/j.enggeo.2019.105245.
  31. Stamatopoulos, C.A., Bassanou, M., Brennan, A.J. and Madabhushi, G. (2007), "Mitigation of the seismic motion near the edge of cliff-type topographies", Soil Dyn. Earthq. Eng., 27(12), 1082-1100. http://doi.org/10.1016/j.soildyn.2007.01.012.
  32. Stamatopoulos, C.A. and Bassanou, M. (2009), "Mitigation of the seismic motion near the edge of cliff-type topographies using anchors and piles", B. Earthq. Eng., 7(1), 221-253. http://doi.org/10.1007/s10518-008-9099-9.
  33. Steedman, R.S. and Zeng, X. (1990), "The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall", Geotechnique, 40(1), 103-112. http://doi.org/10.1016/0148-9062(90)93144-B.
  34. Takaji, K. (2019). "Energy-based Newmark method for earthquake-induced slope displacements", Soil Dyn. Earthq. Eng., 121, 121-134. http://doi.org/10.1016/j.soildyn.2019.02.027.
  35. Xie, S., Gao, M., Chen, D., Sun, Y., Pan, H., Su, H. and Lan, S. (2018), "Stability influence factors analysis and construction of a deep beam anchorage structure in roadway roof", Int. J. Min. Sci. Tech., 28(3), 445-451. http://doi.org/10.1016/j.ijmst.2017.11.007.
  36. Yan, M., Xia, Y., Liu, T. and Bowa, V.M. (2019), "Limit analysis under seismic conditions of a slope reinforced with prestressed anchor cables", Comput. Geotech., 108, 226-233. http://doi.org/10.1016/j.compgeo.2018.12.027.
  37. Yan, X. and Liang, L. (2019), "Fatigue performance of post-installed anchorage beams", Constr. Build. Mater., 229, 116597. http://doi.org/10.1016/j.conbuildmat.2019.07.323.
  38. Yazdandoust, M. (2017), "Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test", Soil Dyn. Earthq. Eng., 97, 216-232. https://doi.org/10.1016/j.soildyn.2017.03.011.
  39. Yazdandoust, M. (2019a), "Assessment of horizontal seismic coefficient for three different types of reinforced soil structure using physical and analytical modeling", Int. J. Geomech., 19(7), 04019070. http://doi.org/10.1061/(ASCE)GM.1943-5622.0001344.
  40. Yazdandoust, M. (2019b), "Shaking table modeling of MSE/soil nail hybrid retaining walls", Soils Found., 59(2), 241-252. https://doi.org/10.1016/j.sandf.2018.05.013.
  41. Zamiran, S. and Osouli, A. (2018), "Seismic motion response and fragility analyses of cantilever retaining walls with cohesive backfill", Soils Found., 58(2), 412-426. http://doi.org/10.1016/j.sandf.2018.02.010.
  42. Zhao, X.Y., Salgado, R. and Prezzi, M. (2014), "Centrifuge modelling of combined anchors for slope stability", P. I. Civ. Eng. Geotech., 167(4), 357-370. https://doi.org/10.1680/geng.12.00076.
  43. Zhu, D.Y., Lee, C.F., Chan, D.H. and Jiang, H.D. (2005), "Evaluation of the stability of anchor-reinforced slopes", Can. Geotech. J., 42(5), 1342-1349. https://doi.org/10.1139/t05-060.