Glucosylceramide와 glucosylsphingosine에 의해 유도되는 신경세포 사멸에 대한 HDAC 저해제의 억제 효과 연구

Inhibitory Action of a Histone Deacetylase 6 Inhibitor on Glucosylceramide- and Glucosylsphingosine-induced Neuronal Cell Apoptosis

  • 정남희 (이화여자대학교 의과대학 생화학교실) ;
  • 남유화 (이화여자대학교 의과대학 생화학교실) ;
  • 박세영 (이화여자대학교 의과대학 생화학교실) ;
  • 김지연 (이화여자대학교 의과대학 생화학교실) ;
  • 정성철 (이화여자대학교 의과대학 생화학교실)
  • Jung, Namhee (Department of Biochemistry, College of Medicine, Ewha Womans University) ;
  • Nam, Yu Hwa (Department of Biochemistry, College of Medicine, Ewha Womans University) ;
  • Park, Saeyoung (Department of Biochemistry, College of Medicine, Ewha Womans University) ;
  • Kim, Ji Yeon (Department of Biochemistry, College of Medicine, Ewha Womans University) ;
  • Jung, Sung-Chul (Department of Biochemistry, College of Medicine, Ewha Womans University)
  • 발행 : 2020.06.30

초록

Gaucher disease (GD)는 glucocerebrosidase 유전자(GBA)의 돌연변이에 의하여 발병하는 전세계적으로 가장 유병율이 높은 리소좀 축적질환이다. GD는 신경학적인 증상의 유무에 따라 3가지 임상형으로 구분된다. 신경병증 GD인 2형과 3형의 경우는 대뇌에서 glucosylceramide (GlcCer)와 glucosylsphingosine (GlcSph)의 농도가 증가하면서 신경세포의 심각한 손실이 야기되는 특징을 보인다. 신경교종에서 유래한 H4 세포를 GD에서 증가하는 기질인 GluCer와 GlcSph를 첨가하여 배양하였을 때, 심각한 DNA손상과 더불어 세포의 사멸이 야기되는 것과 이러한 신경세포의 사멸은 GluCer 보다는 GlcSph을 처리하였을 때 더 현저하게 증가하는 것을 관찰하였다. H4 세포에 히스톤 탈아세틸화 효소(HDAC) 6의 저해제인 tubacin과 GlcSph을 함께 처리하였을 경우에는 DNA손상은 물론 GlcSph에 의하여 유도된 세포사멸과 관련된 단백질 인자들의 발현이 모두 감소되었다. 본 연구를 통해 GlcSph이 세포사멸을 통하여 신경병증 GD의 발병에 주요한 역할을 한다는 것을 알 수 있었고, HDAC6 저해제가 신경병증 GD 환자를 위한 치료제 후보물질로 제시될 수 있는 가능성을 확인하였다.

Purpose: Gaucher disease (GD), which is the most prevalent lysosomal storage disorder worldwide, is caused by mutations in the glucocerebrosidase gene (GBA). GD is divided into three clinical subtypes based on the appearance of neurological symptoms. Type 1 GD is a chronic non-neuronopathic disease, and types 2 and 3 are acute neuronopathic and chronic neuronopathic forms, respectively. Neuronopathic GD types 2 and 3 are characterized by increased levels of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph) in the brain, leading to massive loss of neurons. Methods: DNA damage and subsequent apoptosis of H4 cells were observed following neuroglioma H4 cell culture with GlcCer or GlcSph. Neuronal cell apoptosis was more prominent upon treatment with GlcSph. Results: When H4 cells were treated with GlcSph in the presence of tubacin, a histone deacetylase 6 inhibitor (HDAC6i), attenuation of both DNA damage and a reduction in the protein expression levels of GlcSph-induced apoptosis-associated factors were observed. Conclusion: These findings indicated that GlcSph played a prominent role in the pathogenesis of neuronopathic GD by inducing apoptosis, and that HDAC6i could be considered a therapeutic candidate for the treatment of neuronopathic GD.

키워드

참고문헌

  1. Grabowski GA. Phenotype, diagnosis, and treatment of Gaucher's disease. Lancet 2008;372:1263-71. https://doi.org/10.1016/S0140-6736(08)61522-6
  2. Vellodi A. Lysosomal storage disorders. Brit J Haematol 2005;128:413-31. https://doi.org/10.1111/j.1365-2141.2004.05293.x
  3. Kaplan P, Andersson HC, Kacena KA, Yee JD. The clinical and demographic characteristics of nonneuronopathic Gaucher disease in 887 children at diagnosis. Arch Pediatr Adolesc Med 2006;160:603-8. https://doi.org/10.1001/archpedi.160.6.603
  4. Langeveld M, Elstein D, Szer J, Hollak CEM, Zimran A. Classifying the additional morbidities of Gaucher disease. Blood Cells Mol Dis 2018;68:209-10. https://doi.org/10.1016/j.bcmd.2016.12.006
  5. Conradi NG, Sourander P, Nilsson O, Svennerholm L, Erikson A. Neuropathology of the Norrbottnian type of Gaucher disease. Morphological and biochemical studies. Acta Neuropathol 1984;65:99-109. https://doi.org/10.1007/BF00690463
  6. Farfel-Becker T, Vitner EB, Pressey SN, Eilam R, Cooper JD, Futerman AH. Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. Hum Mol Genet 2011;20:1375-86. https://doi.org/10.1093/hmg/ddr019
  7. Shen HM, Mizushima N. At the end of the autophagic road: An emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci 2014;39:61-71. https://doi.org/10.1016/j.tibs.2013.12.001
  8. Wei H, Kim SJ, Zhang Z, Tsai PC, Wisniewski KE, Mukherjee AB. ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 2008;17:469-77. https://doi.org/10.1093/hmg/ddm324
  9. Hong YB, Kim EY, Jung SC. Down-regulation of Bcl-2 in the fetal brain of the Gaucher disease mouse model: A possible role in the neuronal loss. J Hum Genet 2004;49:349-54. https://doi.org/10.1007/s10038-004-0155-2
  10. Finn LS, Zhang M, Chen SH, Scott CR. Severe type II Gaucher disease with ichthyosis, arthrogryposis and neuronal apoptosis: Molecular and pathological analyses. Am J Med Genet 2000;91:222-6. https://doi.org/10.1002/(SICI)1096-8628(20000320)91:3<222::AID-AJMG13>3.0.CO;2-#
  11. Liu KP, Zhou D, Ouyang DY, Xu LH, Wang Y, Wang LX, et al. LC3B-II deacetylation by histone deacetylase 6 is involved in serum-starvation-induced autophagic degradation. Biochem Biophys Res Commun 2013;441:970-5. https://doi.org/10.1016/j.bbrc.2013.11.007
  12. Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 2005;280:40282-92. https://doi.org/10.1074/jbc.M508786200
  13. Kim C, Choi H, Jung ES, Lee W, Oh S, Jeon NL, et al. HDAC6 inhibitor blocks amyloid beta-induced impairment of mitochondrial transport in hippocampal neurons. PLoS One 2012;7:e42983. https://doi.org/10.1371/journal.pone.0042983
  14. Yang C, Rahimpour S, Lu J, Pacak K, Ikejiri B, Brady RO, et al. Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones. Proc Natl Acad Sci U S A 2013;110:966-71. https://doi.org/10.1073/pnas.1221046110
  15. Chuang WL, Pacheco J, Zhang XK, Martin MM, Biski CK, Keutzer JM, et al. Determination of psychosine concentration in dried blood spots from newborns that were identified via newborn screening to be at risk for Krabbe disease. Clin Chim Acta 2013;419:73-6. https://doi.org/10.1016/j.cca.2013.01.017
  16. Chuang WL, Pacheco J, Cooper S, McGovern MM, Cox GF, Keutzer J, et al. Lyso-sphingomyelin is elevated in dried blood spots of Niemann-Pick B patients. Mol Genet Metab 2014;111:209-11. https://doi.org/10.1016/j.ymgme.2013.11.012
  17. Gelb MH, Scott CR, Turecek F. Newborn screening for lysosomal storage diseases. Clin Chem 2015;61:335-46. https://doi.org/10.1373/clinchem.2014.225771
  18. Nilsson O, Svennerholm L. Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J Neurochem 1982;39:709-18. https://doi.org/10.1111/j.1471-4159.1982.tb07950.x
  19. Stirnemann J, Vigan M, Hamroun D, Heraoui D, Rossi-Semerano L, Berger MG, et al. The French Gaucher's disease registry: Clinical characteristics, complications and treatment of 562 patients. Orphanet J Rare Dis 2012;7:77. https://doi.org/10.1186/1750-1172-7-77
  20. Berger J, Stirnemann J, Bourgne C, Pereira B, Pigeon P, Heraoui D, et al. The uptake of recombinant glucocerebrosidases by blood monocytes from type 1 Gaucher disease patients is variable. Br J Haematol 2012;157:274-7. https://doi.org/10.1111/j.1365-2141.2011.08989.x
  21. Yoshida S, Kido J, Matsumoto S, Momosaki K, Mitsubuchi H, Shimazu T, et al. Prenatal diagnosis of Gaucher disease using next-generation sequencing. Pediatr Int 2016;58:946-9. https://doi.org/10.1111/ped.13069
  22. Vigan M, Stirnemann J, Caillaud C, Froissart R, Boutten A, Fantin B, et al. Modeling changes in biomarkers in Gaucher disease patients receiving enzyme replacement therapy using a pathophysiological model. Orphanet J Rare Dis 2014;9:95. https://doi.org/10.1186/1750-1172-9-95
  23. Fuller M, Szer J, Stark S, Fletcher JM. Rapid, singlephase extraction of glucosylsphingosine from plasma: A universal screening and monitoring tool. Clin Chim Acta 2015;450:6-10. https://doi.org/10.1016/j.cca.2015.07.026
  24. Dekker N, van Dussen L, Hollak CE, Overkleeft H, Scheij S, Ghauharali K, et al. Elevated plasma glucosylsphingosine in Gaucher disease: Relation to phenotype, storage cell markers, and therapeutic response. Blood 2011;118:e118-27. https://doi.org/10.1182/blood-2011-05-352971
  25. Rolfs A, Giese AK, Grittner U, Mascher D, Elstein D, Zimran A, et al. Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in Gaucher disease in a non-Jewish, Caucasian cohort of Gaucher disease patients. PLoS One 2013;8:e79732. https://doi.org/10.1371/journal.pone.0079732
  26. Hamler R, Brignol N, Clark SW, Morrison S, Dungan LB, Chang HH, et al. Glucosylceramide and glucosylsphingosine quantitation by liquid chromatographytandem mass spectrometry to enable in vivo preclinical studies of neuronopathic Gaucher disease. Anal Chem 2017;89:8288-95. https://doi.org/10.1021/acs.analchem.7b01442
  27. Tylki-Szymanska A, Szymanska-Rozek P, Hasinski P, Lugowska A. Plasma chitotriosidase activity versus plasma glucosylsphingosine in wide spectrum of Gaucher disease phenotypes - A statistical insight. Mol Genet Metab 2018;123:495-500. https://doi.org/10.1016/j.ymgme.2018.02.004
  28. Vaccaro AM, Muscillo M, Suzuki K. Characterization of human glucosylsphingosine glucosyl hydrolase and comparison with glucosylceramidase. Eur J Biochem 1985;146:315-21. https://doi.org/10.1111/j.1432-1033.1985.tb08655.x
  29. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett RA, Aflaki E, et al. A new glucocerebrosidasedeficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech 2016;9:769-78. https://doi.org/10.1242/dmm.024588
  30. Hein LK, Meikle PJ, Hopwood JJ, Fuller M. Secondary sphingolipid accumulation in a macrophage model of Gaucher disease. Mol Genet Metab 2007;92:336-45. https://doi.org/10.1016/j.ymgme.2007.08.001
  31. Schueler UH, Kolter T, Kaneski CR, Blusztajn JK, Herkenham M, Sandhoff K, et al. Toxicity of glucosylsphingosine (glucopsychosine) to cultured neuronal cells: A model system for assessing neuronal damage in Gaucher disease type 2 and 3. Neurobiol Dis 2003;14:595-601. https://doi.org/10.1016/j.nbd.2003.08.016
  32. Farfel-Becker T, Vitner EB, Futerman AH. Animal models for Gaucher disease research. Dis Model Mech 2011;4:746-52. https://doi.org/10.1242/dmm.008185
  33. Enquist IB, Lo Bianco C, Ooka A, Nilsson E, Mansson JE, Ehinger M, et al. Murine models of acute neuronopathic Gaucher disease. Proc Natl Acad Sci U S A 2007;104:17483-8. https://doi.org/10.1073/pnas.0708086104
  34. Vitner EB, Salomon R, Farfel-Becker T, Meshcheriakova A, Ali M, Klein AD, et al. RIPK3 as a potential therapeutic target for Gaucher's disease. Nat Med 2014;20:204-8. https://doi.org/10.1038/nm.3449
  35. Lugowska A, Hetmanczyk-Sawicka K, Iwanicka-Nowicka R, Fogtman A, Ciesla J, Purzycka-Olewiecka JK, et al. Gene expression profile in patients with Gaucher disease indicates activation of inflammatory processes. Sci Rep 2019;9:6060. https://doi.org/10.1038/s41598-019-42584-1
  36. Moran MT, Schofield JP, Hayman AR, Shi GP, Young E, Cox TM. Pathologic gene expression in Gaucher disease: up-regulation of cysteine proteinases including osteoclastic cathepsin K. Blood 2000;96:1969-78. https://doi.org/10.1182/blood.v96.5.1969.h8001969_1969_1978
  37. Johnstone RW. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nat Rev Drug Discov 2002;1:287-99. https://doi.org/10.1038/nrd772
  38. Wang Y, Wang X, Liu L, Wang X. Hdac inhibitor trichostatin A-inhibited survival of dopaminergic neuronal cells. Neurosci Lett 2009;467:212-6. https://doi.org/10.1016/j.neulet.2009.10.037
  39. Kim SJ, Lee BH, Lee YS, Kang KS. Defective cholesterol traffic and neuronal differentiation in neural stem cells of Niemann-Pick type C disease improved by valproic acid, a histone deacetylase inhibitor. Biochem Biophys Res Commun 2007;360:593-9. https://doi.org/10.1016/j.bbrc.2007.06.116
  40. Seo J, Jo SA, Hwang S, Byun CJ, Lee HJ, Cho DH, et al. Trichostatin A epigenetically increases calpastatin expression and inhibits calpain activity and calciuminduced SH-SY5Y neuronal cell toxicity. FEBS J 2013;280:6691-701. https://doi.org/10.1111/febs.12572
  41. Barkhuizen M, Anderson DG, Grobler AF. Advances in GBA-associated Parkinson's disease-Pathology, presentation and therapies. Neurochem Int 2016;93:6-25. https://doi.org/10.1016/j.neuint.2015.12.004
  42. Lu J, Yang C, Chen M, Ye DY, Lonser RR, Brady RO, et al. Histone deacetylase inhibitors prevent the degradation and restore the activity of glucocerebrosidase in Gaucher disease. Proc Natl Acad Sci U S A 2011;108:21200-5. https://doi.org/10.1073/pnas.1119181109
  43. Kitatani K, Wada M, Perry D, Usui T, Sun Y, Obeid LM, et al. Activation of p38 Mitogen-Activated Protein Kinase in Gaucher's Disease. PLoS One 2015;10:e0136633. https://doi.org/10.1371/journal.pone.0136633
  44. Khan S, Jena G. Sodium butyrate, a Hdac inhibitor ameliorates eNOS, iNOS and TGF-beta1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol 2014;73:127-39. https://doi.org/10.1016/j.fct.2014.08.010
  45. Kaliszczak M, Trousil S, Ali T, Aboagye EO. AKT activation controls cell survival in response to HDAC6 inhibition. Cell Death Dis 2016;7:e2286. https://doi.org/10.1038/cddis.2016.180