• 제목/요약/키워드: Glucosylsphingosine

검색결과 4건 처리시간 0.018초

Glucosylsphingosine Induces Itch-Scratch Responses in Mice

  • Kim, Hyoung-June;Kim, Kwang-Mi;Noh, Min-Soo;Yoo, Hye-Jin;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제18권3호
    • /
    • pp.316-320
    • /
    • 2010
  • Pruritus is one of major symptoms in atopic dermatis. The pathophysiological mechanism of pruritus is unclear. The search for pruritogen is important in elucidating the pathophysiological mechanism of pruritus in atopic dermatitis. Glucosylsphingosine (Gsp) is upregulated in the strateum corneum of atopic dermatitis patients. We investigated to determine whether Gsp induces itch-scratch responses (ISRs) in mice. Intradermal administration of Gsp induces ISRs. Gsp dose-dependently induced scratching response at 50-500 nmol/site range. Pretreatment with naltrexone, an opioid $\mu$ receptor antagonist, and capsaicin, a TrpV1 receptor agonist, inhibited Gsp-induced ISRs. Additionally, Gsp-induced ISRs were also suppressed by cyproheptadine, an antagonist of serotonin receptor. These findings suggest that Gsp-induced scratching might be at least partly mediated by capsaicin-sensitive primary afferents, and the opioids receptor systems might be involved in transmission of itch signaling in the central nervous system. Furthermore, our findings suggest that Gsp-induced ISRs may be attributable to the serotonin-mediated pathways and Gsp is not any more one of byproducts of abnormal skin barrier but can lead to induce pruritus, one of typical symptoms of atopic dermatitis.

Glucosylsphingosine Activates Serotonin Receptor 2a and 2b: Implication of a Novel Itch Signaling Pathway

  • Afzal, Ramsha;Shim, Won-Sik
    • Biomolecules & Therapeutics
    • /
    • 제25권5호
    • /
    • pp.497-503
    • /
    • 2017
  • Recent reports claimed that glucosylsphingosine (GS) is highly accumulated and specifically evoking itch-scratch responses in the skins of atopic dermatitis (AD) patients. However, it was unclear how GS can trigger itch-scratch responses, since there were no known molecular singling pathways revealed yet. In the present study, it was verified for the first time that GS can activate mouse serotonin receptor 2a (mHtr2a) and 2b (mHtr2b), but not 2c (mHtr2c) that are expressed in HEK293T cells. Specifically, effects of GS on all mouse serotonin receptor 2 subfamily were evaluated by calcium imaging techniques. The GS-induced intracellular calcium increase was dose-dependent, and antagonists such as ketanserin (Htr2a antagonist) and RS-127445 (Htr2b antagonist) significantly blocked the GS-induced responses. Moreover, the proposed GS-induced responses appear to be mediated by phospholipase C (PLC), since pretreatment of a PLC inhibitor U-73122 abolished the GS-induced responses. Additionally, the GS-induced calcium influx is probably mediated by endogenous TRPC ion channels in HEK293T cells, since pretreatment of SKF-96365, an inhibitor for TRPC, significantly suppressed GS-induced response. In conclusion, the present study revealed for the first time that GS can stimulate mHtr2a and mHtr2b to induce calcium influx, by utilizing PLC-dependent pathway afterwards. Considering that GS is regarded as a pruritogen in AD, the present study implicates a novel GS-induced itch signaling pathway.

Glucosylceramide와 glucosylsphingosine에 의해 유도되는 신경세포 사멸에 대한 HDAC 저해제의 억제 효과 연구 (Inhibitory Action of a Histone Deacetylase 6 Inhibitor on Glucosylceramide- and Glucosylsphingosine-induced Neuronal Cell Apoptosis)

  • 정남희;남유화;박세영;김지연;정성철
    • 대한유전성대사질환학회지
    • /
    • 제20권1호
    • /
    • pp.1-13
    • /
    • 2020
  • Gaucher disease (GD)는 glucocerebrosidase 유전자(GBA)의 돌연변이에 의하여 발병하는 전세계적으로 가장 유병율이 높은 리소좀 축적질환이다. GD는 신경학적인 증상의 유무에 따라 3가지 임상형으로 구분된다. 신경병증 GD인 2형과 3형의 경우는 대뇌에서 glucosylceramide (GlcCer)와 glucosylsphingosine (GlcSph)의 농도가 증가하면서 신경세포의 심각한 손실이 야기되는 특징을 보인다. 신경교종에서 유래한 H4 세포를 GD에서 증가하는 기질인 GluCer와 GlcSph를 첨가하여 배양하였을 때, 심각한 DNA손상과 더불어 세포의 사멸이 야기되는 것과 이러한 신경세포의 사멸은 GluCer 보다는 GlcSph을 처리하였을 때 더 현저하게 증가하는 것을 관찰하였다. H4 세포에 히스톤 탈아세틸화 효소(HDAC) 6의 저해제인 tubacin과 GlcSph을 함께 처리하였을 경우에는 DNA손상은 물론 GlcSph에 의하여 유도된 세포사멸과 관련된 단백질 인자들의 발현이 모두 감소되었다. 본 연구를 통해 GlcSph이 세포사멸을 통하여 신경병증 GD의 발병에 주요한 역할을 한다는 것을 알 수 있었고, HDAC6 저해제가 신경병증 GD 환자를 위한 치료제 후보물질로 제시될 수 있는 가능성을 확인하였다.

A Review of Gaucher Disease in Korea

  • Sohn, Young Bae
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Gaucher disease (GD, OMIM #230800 OMIM#230800) is a rare, autosomal recessive inherited metabolic disorder caused by mutation in GBA1 encoding the lysosomal enzyme, glucocerebrosidase. The deficiency of glucocerebrosidase leads to an accumulation of its substrate, glucosylceramide in macrophages of various tissues. Common clinical manifestations include cytopenia, splenomegaly, hepatomegaly, and bone lesions. The phenotype of GD is classified into three clinical categories: Type 1 (non-neuronopathic) is characterized by involvements on the viscera, whereas types 2 and 3 (neuronopathic) are associated with not only visceral symptoms but also neurological impairment, either severe in type 2 or variable in type 3. A diagnosis of GD can be confirmed by demonstrating the deficiency of acid glucocerebrosidase activity in leukocytes. Mutations in the GBA1 should be identified as they may be of prognostic value in some cases. Biomarkers including Chitotriosidase, CCL18, and glucosylsphingosine (lyso-GL1) are useful in diagnosis and treatment monitoring. Currently available disease-specific treatment in Korea consists of intravenous enzyme replacement therapy and substrate reduction therapy. For enhancing long-term prognosis, the onset of Parkinson's disease and Lewy body dementia, or the occurrence of a blood disease or cancer (hepatocellular carcinoma) should be monitored in older patients. The development of new strategies that can modify the neurological phenotype are expected, especially in Asia including Korea, where the prevalence of neuronopathic GD is relatively higher than that in western countries.