DOI QR코드

DOI QR Code

비대칭으로 보강된 복합재 원형 스파의 파손하중 예측

The Prediction of Failure Load for an Unsymmetrically Stiffened Circular Composite Spar

  • 투고 : 2020.04.16
  • 심사 : 2020.06.06
  • 발행 : 2020.07.01

초록

원형 복합재 튜브를 고고도 장기체공 무인기의 주요 스파에 사용하였다. 본 논문에서는 수정된 Brazier 방법을 이용하여 비대칭으로 보강된 원형 스파의 파단하중을 예측할 수 있는 이론적인 모델을 제안하였다. 이 모델을 이용하여 비대칭으로 보강된 원형스파의 최대 허용 굽힘 모멘트를 예측하였다. 해석 결과로부터 원형 스파의 상단에 위치한 보강된 캡은 최대 허용 굽힘 모멘트를 증가시키는 것을 알 수 있다. 4점 굽힘 실험을 수행하여 스파 캡이 파손하중에 미치는 영향을 평가하였고 제안된 모델과 비교하였다. 그리고 수치해석을 수행하여 보강된 원형 스파의 거동을 분석하였다. 제안된 이론적인 모델은 실험 및 수치해석 결과와 잘 일치함을 보였다.

The circular composite tubes have been used as a main spar of HALE-UAV(High Altitude Long Endurance-Unmanned Air Vehicle). In this paper, an analytical model is presented for the prediction of the failure load of unsymmetrically stiffened circular spar using a modified Brazier approach. This model was used to predict the moment carrying capacity of the unsymmetrically stiffened circular spar. From the results, we can know that a stiffened cap placed in the top sector of a spar increased the bending capabilities. Four point bending tests were conducted to estimate the effect of the cap on the failure load and compared with the proposed model. And numerical simulations were performed to analyze the behavior of stiffened circular spar. Comparisons of the results from the proposed model with those from experiments and numerical modes show good correlation.

키워드

참고문헌

  1. Park, S. W., Shin, J. W. and Kim, T., "Development of the main wing structure of a high-altitude long endurance UAV," International Journal of Aeronautical and Space Sciences, Vol. 19, 2018, pp. 53-71. https://doi.org/10.1007/s42405-018-0002-x
  2. Brazier, L. G., "On the flexure of thin cylindrical shell and other "Thin" section," Proceedings of the Royal Society: series A, Vol. 116, 1927, pp. 104-114.
  3. Fabian, O., "Collapse of cylindrical elastic tubes under combined bending, pressure and axial loads," International Journal of Solids and Structures, Vol. 13, 1977, pp. 1257-1270. https://doi.org/10.1016/0020-7683(77)90099-3
  4. Tatting, B. F., Gurdal, Z. and Vasiliev, V. V., "The brazier effect for finite length composite cylinders under bending," International Journal of Solids and Structures, Vol. 34, 1997, pp. 1419-1440. https://doi.org/10.1016/S0020-7683(96)00094-7
  5. Ibrahim, S. and Polyzois, D., "Ovalization analysis of fiber-reinforced plastic poles," Composite Structures, Vol. 45, 1999, pp. 7-12. https://doi.org/10.1016/S0263-8223(98)00137-8
  6. Tang, S. C., Chu, C. C. and Yeung, K. S., "Collapse of long, noncircular, cylindrical shells under pure bending," Computer and Structures, Vol. 21, 1985, pp. 1345-1353. https://doi.org/10.1016/0045-7949(85)90188-9
  7. Guarracino, F., "On the analysis of cylindrical tubes under flexure: theoretical formulations, experimental data and finite element analysis," Thin-Walled Structures, Vol. 41, 2003, pp. 127-147. https://doi.org/10.1016/S0263-8231(02)00083-6
  8. Fuchs, H. P. and Hyer, M. W., "The nonlinear prebuckling response of short thin-walled laminated composite cylinders in bending," Composite Structures, Vol. 34, 1996, pp. 309-324. https://doi.org/10.1016/0263-8223(95)00152-2
  9. Kim, S. J., Shin, J. W., Kim, H., Kim, T. and Kim, S., "The modified Brazier approach to predict the collapse load of a stiffened circular composite spar under bending load," Aerospace Science and Technology, Vol. 55, 2016, pp. 474-481. https://doi.org/10.1016/j.ast.2016.06.018
  10. Chang, F. K. and Chang, A., "A progressive damage model for laminate composites containing stress concentrations," Journal of composite materials, Vol. 21, 1987, pp. 834-855. https://doi.org/10.1177/002199838702100904