참고문헌
-
International Atomic Energy Agency, Production Technologies for
$^{99}Mo$ and$^{99m}Tc$ , IAEA-TECDOC-1065, IAEA, Vienna, 1999. - International Atomic Energy Agency, Non-HEU Production Technologies for Molybdenum-99 and Technetium-99m, IAEA Nuclear Energy Series, No. NF-T-5.4, IAEA, Vienna, 2013.
- National Research Council of the National Academy of Sciences, Medical Isotope Production without Highly Enriched Uranium, National Academic Press, Washington D. C., 2009.
- L.G. Stang, Manual of Isotope Production Processes in Use at Brookhaven National Laboratory, BNL-864, Brookhaven National Laboratory, Upton, New York, 1964.
- H. Anger, A New Instrument for Mapping Gamma-Ray Emitters. Biology and Medicine Quarterly Report, UCRL-3653, University of California Radiation Laboratory, Berkeley, 1957.
- H. Anger, Scintillation camera with multichannel collimators, J. Nucl. Med. 5 (1964) 515-531.
- R. Dreyer, R. Muenze, Labeling of human serum albumin with 99m-Tc (in German), Nat. Wiss. R. 18 (1969) 629-633.
- W.C. Eckelmann, Unparalleled contribution of technetium-99m to medicine over 5 decades, JACC (J. Am. Coll. Cardiol.): Cardiovasc. Imag. 2 (2009) 364-368. https://doi.org/10.1016/j.jcmg.2008.12.013
-
OECD Nuclear Energy Agency High-Level Group on the Security of Supply of Medical Radioisotopes, The Supply of Medical Radioisotopes - 2015 Medical Isotope Supply Review:
$^{99}Mo/^{99m}Tc$ Market Demand and Production Capacity Projection 2015-2020, Nuclear Development NEA/SEN/HLGMR 5, OECD NEA, Paris, 2015. -
Yu Kotschkov, V.V. Pozdeyev, A.I. Krascheninnikov, N.V. Zakharov, Production of fission
$^{99}Mo$ with closed uranium cycle at the nuclear reactor WWR-Ts (in Russian), Radiokhimiya 54 (2012) 173-177. - A. Sameh, H.J. Ache, Production techniques for fission molybdenum-99, Radiochim. Acta 41 (1987) 65-72. https://doi.org/10.1524/ract.1987.41.23.65
- L.C. Brown, Methods and Apparatus for Selective Gaseous Extraction of Molybdenum-99 and Other Fission Product Radioisotopes, 2015. Patent EP 2580763 B1.
-
R. Muenze, O. Hladik, G. Bernhard, W. Boessert, R. Schwarzbach, Large scale production of fission
$^{99}Mo$ by using fuel elements of a research reactor as starting material, Int. J. Appl. Radiat. Isot. 35 (1984) 49-54. https://doi.org/10.1016/0020-708X(84)90131-5 - D. Novotny, G. Wagner, Procedure of small scale production of Mo-99 on the basis of irradiated natural uranium metal as target, in: Consultants Meeting on Small Scale Production of Fission Mo-99 for Use in Tc-99m Generators, IAEA, Vienna, July 7-10, 2003.
- J. Sauerwein, K. Brooks, C. Critch, Selective gas extraction: a transformational production technology being implemented by GA, MURR and NORDION, in: Mo-99 Topical Meeting on Molybdenum-99 Technology Developments, Boston, MA, Aug. 31-Sept, vol. 3, 2015.
-
G.J. Beyer, B. Eichler, T. Reetz, R. Muenze, J. Comor, New head process for nonHEU
$^{99}Mo$ -production based on the oxidation of irradiated$UO_2$ -pellets forming soluble$U_3O_8$ , Nucl. Technol. Radiat. Prot. 31 (2016) 102-108. https://doi.org/10.2298/NTRP1601102B -
S.-K. Lee, G.J. Beyer, J.S. Lee, Development of industrial-scale fission
$^{99}Mo$ production using low enriched uranium target, Nucl. Eng. Technol. 48 (2016) 613-623. https://doi.org/10.1016/j.net.2016.04.006 - H.J. Ryu, C.K. Kim, M. Sim, J.M. Park, J.H. Lee, Development of high-density U/Al dispersion plates for Mo-99 production using atomized uranium powder, Nucl. Eng. Technol. 45 (2013) 979-986. https://doi.org/10.5516/NET.07.2013.014
- M. Druce, Australian's Experiences with Non-HEU Mo-99 Production, Supporting Small-Scale Non-HEU Mo-99 Production Capacity Building, Coordination Meeting for TC Project INT1056, IAEA, Vienna, 2013.
- G.F. Vandegrift, G. Hofman, C. Conner, J. Sedlet, D. Walker, A. Leonard, E.L. Wood, T.C. Wiencek, J.L. Snelgrove, A. Mutalib, B. Purwadi, H.G. Adang, L. Hotman, K. Moeridoen, A. Sukmana, A.S. Sriyono, H. Nasution, D.L. Amin, A. Basiran, A. Gogo, D. Sunaryadi, T. Taryo, Full-scale demonstration of the CINTICHEM process for the production of Mo-99 using a low-enriched target, RERTR Meeting, Sao Paolo, Brazil (1998). Oct. 18-23.
-
G.F. Vandegrift, D. Stepinski, J. Jerden, A. Gelis, E. Krahn, L. Hafenrichter, J. Holland, GTRI Process Technology in Technical Development for Conversion of
$^{99}Mo$ Production to Low Enriched Uranium, RERTR Meeting, Santiago, 2011. Chile Oct. 23-27. - J. Kuperman, The global threat reduction initiative and conversion of isotope production to LEU targets, in: Paper Presented at the 2004 International Meeting on Reduced Enrichment for Research and Test Reactors, Vienna, October 7, 2004.
- A. Sameh, Production cycle for large scale fission Mo-99 separation by the processing of irradiated LEU uranium silicide fuel element targets, Sci. Technol. Nucl. Install. (2013) 704846.
- S. Dittrich, History and actual state of non-HEU fission-based Mo-99 production with low-performance research reactors, Sci. Technol. Nucl. Install. (2013) 514894.
-
R. Muenze, G.J. Beyer, R. Ross, G. Wagner, D. Novotny, E. Franke, M. Jehangir, S. Pervez, A. Mushtaq, The fission-based
$^{99}Mo$ production process ROMOL-99 and its application to PINSTECH Islamabad, Sci. Technol. Nucl. Install. (2013) 932546. - T. Kim, S.-K. Lee, S. Lee, J.S. Lee, S.W. Kim, Development of silver nanoparticle-doped adsorbents for the separation and recovery of radioactive iodine from alkaline solutions, Appl. Radiat. Isot. 129 (2017) 215-221. https://doi.org/10.1016/j.apradiso.2017.07.033
- W.D. Bond, W.E. Clark, Reduction of Cupric Oxide by Hydrogen. I. Fundamental Kinetics, ORNL-2815, Oak Ridge National Laboratory, Oak Ridge, 1960.
- T.W. Bowyer, R. Kephart, P.W. Eslinger, J.I. Friese, H.S. Mile, P.R. Saey, Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions, J. Environ. Radioact. 115 (2003) 192-200. https://doi.org/10.1016/j.jenvrad.2012.07.018
- International Atomic Energy Agency, Management of Radioactive Waste from "Mo Production, IAEA-TECDOC-1051, IAEA, Vienna, 1998.
피인용 문헌
- Neutronics analysis of a stacked structure for a subcritical system with LEU solution driven by a D-T neutron source for 99Mo production vol.32, pp.11, 2021, https://doi.org/10.1007/s41365-021-00968-x
- Radioactive Fission Waste from Molybdenum-99 Production and Proliferation Risks vol.927, pp.1, 2020, https://doi.org/10.1088/1755-1315/927/1/012041