References
- Lee HB, Patriarca A, Magan N. Alternaria in food: ecophysiology, mycotoxin production and toxicology. Mycobiology. 2015;43(2):93-106. https://doi.org/10.5941/MYCO.2015.43.2.93
- Luo H, Tao YQ, Fan XY, et al. Identification and characterization of Alternaria iridiaustralis causing leaf spot on iris ensata in China. Mycobiology. 2018;46(2):168-171. https://doi.org/10.1080/12298093.2018.1454007
- Ostry V. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008;1(2):175-188. https://doi.org/10.3920/WMJ2008.x013
- Moharram AM, Zohri AA, Omar HM, et al. In vitro assessment of antimicrobial and anti-inflammatory potential of endophytic fungal metabolites extracts. Eur J Biol Res. 2017;7:234-244.
- Wang XZ, Luo XH, Xiao J, et al. Pyrone derivatives from the endophytic fungus Alternaria tenuissima SP-07 of Chinese herbal medicine Salvia przewalskii. Fitoterapia. 2014;99:184-190. https://doi.org/10.1016/j.fitote.2014.09.017
- Shen L, Tian SJ, Song HL, et al. Cytotoxic tricycloalternarene compounds from endophyte Alternaria sp. W-1 associated with Laminaria japonica. Mar Drugs. 2018;16:pii: E402. https://doi.org/10.3390/md16110402
- Bashyal BP, Wellensiek BP, Ramakrishnan R, et al. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorg Med Chem. 2014;22(21):6112-6116. https://doi.org/10.1016/j.bmc.2014.08.039
- Li DM, Zhang YH, Ji HX, et al. Tricycloalternarene derivatives from endophytic fungus Alternaria tenuissima SY-P-07. Nat Prod Res. 2013;27(20):1877-1881. https://doi.org/10.1080/14786419.2013.771352
- Nguyen HT, Kim S, Yu NH, et al. Antimicrobial activities of an oxygenated cyclohexanone derivative isolated from Amphirosellinia nigrospora JS-1675 against various plant pathogenic bacteria and fungi. J Appl Microbiol. 2019;126(3):894-904. https://doi.org/10.1111/jam.14138
- Lee C, Kim S, Li W, et al. Bioactive secondary metabolites produced by an endophytic fungus Gaeumannomyces sp. JS0464 from a maritime haplophyte Phragmites communis. J Antibiot. 2017;70(6):737-742. https://doi.org/10.1038/ja.2017.39
- Simmons EG. Alternaria: an identification manual. Urecht (Netherlands): Centraalbureau voor Schimmelcultures; 2007.
- Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
- Jeon J, Park SY, Kim JA, et al. Draft genome sequence of Amphirosellinia nigrospora JS-1675, an endophytic fungus from Pteris cretica. Microbiol Resour Announc. 2019;8(20):pii:e00069-19.
- Flicek P, Birney E. Sense from sequence reads: methods for alignment and assembly. Nat Methods. 2009;6(S11):S6-S12. https://doi.org/10.1038/nmeth.1376
- Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics. 2010;95(6):315-327. https://doi.org/10.1016/j.ygeno.2010.03.001
- Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome Res. 2010;20(9):1165-1173. https://doi.org/10.1101/gr.101360.109
- Leggett RM, Clavijo BJ, Clissold L, et al. NextClip: an analysis and read preparation tool for Nextera Long Mate Pair libraries. Bioinformatics. 2014;30(4):566-568. https://doi.org/10.1093/bioinformatics/btt702
- Huang S, Chen Z, Huang G, et al. HaploMerger: reconstructing allelic relationships for polymorphic diploid genome assemblies. Genome Res. 2012;22(8):1581-1588. https://doi.org/10.1101/gr.133652.111
- Boetzer M, Henkel CV, Jansen HJ, et al. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27(4):578-579. https://doi.org/10.1093/bioinformatics/btq683
- Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics. 2014;15(1):211. https://doi.org/10.1186/1471-2105-15-211
- Nadalin F, Vezzi F, Policriti A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics. 2012;13(S14):S8. https://doi.org/10.1186/1471-2105-13-S14-S8
- Waterhouse RM, Seppey M, Simao FA, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018;35(3):543-548. https://doi.org/10.1093/molbev/msx319
- Stanke M, Steinkamp R, Waack S, et al. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32(Web Server):W309-W312. https://doi.org/10.1093/nar/gkh379
- Blin K, Shaw S, Steinke K, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47(W1):W81-W87. https://doi.org/10.1093/nar/gkz310
- Park J, Park J, Jang S, et al. FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics. 2008;24(7):1024-1025. https://doi.org/10.1093/bioinformatics/btn058
- Park J, Lee S, Choi J, et al. Fungal cytochrome P450 database. BMC Genomics. 2008;9(1):402. https://doi.org/10.1186/1471-2164-9-402
- Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob Dna. 2015;6:11. https://doi.org/10.1186/s13100-015-0041-9
- Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet. 2008;9(5):411-412. Author reply 414. https://doi.org/10.1038/nrg2165-c1
- Smit AFA, Hubley R, Green P. RepeatMasker. [Internet]. 2015. Available from: http://repeatmasker.org.
- Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol. 2019;1962:1-14. https://doi.org/10.1007/978-1-4939-9173-0_1
- Burge SW, Daub J, Eberhardt R, et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013;41(D1):D226-D232. https://doi.org/10.1093/nar/gks1005