DOI QR코드

DOI QR Code

Causes of Top Dead Center Error in Marine Generator Engine Power-Measuring Device

선박용 발전기 엔진 출력 측정 장치의 TDC 오차 발생 원인

  • Received : 2020.04.24
  • Accepted : 2020.06.26
  • Published : 2020.06.30

Abstract

Different methods are used for determining the output of engines to obtain the indicated horsepower by measuring the combustion pressure of cylinders, and to obtain the shaft horsepower by measuring the shaft torque. It is difficult to examine the shaft torque using the condition of the cylinder, and the most accurate method used for determining the combustion pressure involves examining the combustion state of the cylinder to evaluate the engine performance and analyze the combustion of the cylinder. During the measurement, the combustion pressure is the most important parameter used for accurately determining the cylinder angle because the cylinder pressure is indicated based on the angle of the crankshaft. In this study, an encoder was used as the crank angle sensor to measure the cylinder pressure on the generator engine of the actual operating ship. The reasons for the differences between the top dead center (TDC) recognized by the encoder (TDCencoder) and the TDC recognized by the compression pressure (TDCcomp) were considered. The dif erences between the TDCcomp and TDCencoder of the cylinders measured at idle running, 25 %, 50 %, and 60 % loads were analyzed to determine for the crankshaft production effect, the crankshaft torsion effect owing to the increased rotational resistance from the increased load, and the coupling damping effect between the engine and generator. It was confirmed that the TDC error occurred up to 3° crank angle as the load of the generator increased.

엔진의 출력을 측정하기 위한 방법은 실린더의 연소압력을 측정하여 지시마력을 구하는 방법과 축토크를 측정하여 축마력을 구하는 방법이 있다. 축토크로 실린더의 상태를 확인하기에는 한계가 있으며, 엔진의 성능 측정과 실린더의 연소 해석을 위해서는 실린더의 연소 상태를 확인할 수 있는 연소압력을 측정하는 방법이 가장 정확하다. 측정에 있어 연소압력은 크랭크샤프트 회전 각도에 따른 실린더 압력이 도시되어야하기 때문에 정확한 실린더 앵글각도를 정확히 인지시키는 작업이 가장 중요하다. 본 연구에서는 실제 운항선의 발전기 엔진을 대상으로 실린더 압력을 측정하기 위하여 크랭크 앵글 센서로 엔코더를 사용하였고 엔코더에서 인지하는 TDC(TDCencoder)와 압축압력에 의한 TDC(TDCcomp) 간의 실측을 통하여 차이가 발생하는 원인에 대하여 고찰하였다. 또한 0 %, 25 %, 50 %와 60 % 부하에서 측정된 실린더의 TDCcomp와 TDCencoder 간의 차이를 통하여 크랭크샤프트의 제작에 의한 영향, 부하증가에 따른 엔진과 발전기 사이의 커플링 영향에 대한 결과를 고찰하였으며, 발전기의 부하가 증가할수록 최대 3°CA까지 TDC의 오차가 발생함을 확인하였다.

Keywords

References

  1. Chang, H., Y. Zhang, and L. Chen(2005), An applied thermodynamic method for correction of TDC in the indicator diagram and its experimental confirmation, Applied Thermal Engineering, Vol. 25, No. 5-6, pp. 759-768. https://doi.org/10.1016/j.applthermaleng.2004.07.016
  2. Charchalis, A. and M. Dereszewski(2013), Processing of instantaneous angular speed signal for detection of a diesel engine failure, Mathematical Problems in Engineering, Vol. 2013, No. 659247, pp. 1-7. https://doi.org/10.1155/2013/659243
  3. Jung, G. S., J. Y. Choi, E. S. Jeong, and J. S. Choi(2012), Correction of TDC Position for Engine Output Measuring in Marine Diesel Engines, Journal of the Krean Society of Marine Engineering, Vol. 36, No. 4, pp. 459-466.
  4. Jung, G. S. and S. K. Lee(2018a), Method for collecting 1 cycle data for output measurement and combustion analysis of large-sized low-speed 4 stroke engine, Korea Patent 1019277860000.
  5. Jung, G. S. and S. K. Lee(2018b), Method for collecting 1 cycle data for output measurement and combustion analysis of large-sized low-speed 4 stroke engine, Korea Patent 1019130700000.
  6. Jung, G. S. and S. K. Lee(2018c), Method for collecting 1 cycle data for output measurement and combustion analysis of large-sized low-speed 4 stroke engine, Korea Patent 1019277850000.
  7. Kowalak, P.(2008), Experimental determination of low speed diesel engine crankshaft twisting, POLISH CIMAC, Vol. 3, No. 2, pp. 75-81.
  8. Morishita, M. and T. Kushiyama(1997), An improved method for determining the TDC position in a PV-diagram (First Report), SAE transactions, Vol. 106, pp. 233-244.
  9. Morishita, M. and T. Kushiyama(1998), An improved method of determining the TDC position in a PV-diagram, SAE Technical Paper, No. 980625.
  10. Pipitone, E. and A. Beccari(2010), Determination of TDC in internal combustion engines by a newly developed thermodynamic approach, Applied Thermal Engineering Vol. 30, No. 14-15, pp. 1914-1926. https://doi.org/10.1016/j.applthermaleng.2010.04.012
  11. Rubber(2020), Rubber Design vibration and noise control, https://www.rubberdesign.nl/products/propulsion-equipment/marin e-couplings, Accessed April 20, 2020.
  12. Stas, M. J.(1996), Thermodynamic determination of TDC in piston combustion engines, SAE paper, No. 960610.
  13. Stas, M. J.(2000), An universally applicable thermodynamic method for TDC determination, SAE Technical Paper, No. 000-01-0561.