DOI QR코드

DOI QR Code

Flow Handover Management Scheme based on QoS in SDN Considering IoT

IoT를 고려한 SDN에서 QoS 기반 플로우 핸드오버 관리 방법

  • Kyung, Yeun-Woong (Division of Computer Engineering, Hanshin University) ;
  • Kim, Tae-Kook (Department of Information, Communications & Software Engineering, Tongmyong University)
  • 경연웅 (한신대학교 컴퓨터공학부) ;
  • 김태국 (동명대학교 정보통신소프트웨어학과)
  • Received : 2020.02.20
  • Accepted : 2020.03.23
  • Published : 2020.06.30

Abstract

In this paper, we propose a QoS-based handover management scheme in SDN. Even though there have been lots of recent services such as IoT, the conventional networks provide a monolitic handover method without considerations on flow-specific QoS features. For example, the conventional Internet provides a handover method which only considers IP continuity. On the other hand, 4G and 5G networks use a strict handover method for all kinds of flows with resource reservations. This means that it is difficult to guarantee the QoS requirements for the flow with a strict QoS requirement in Internet and the inefficient resource utilization can occur in the 4G and 5G because of the strict QoS-based handover management. The proposed scheme proposes the flow handover management scheme based on QoS requirements according to the SDN controller's management. From the network operators' perspective, the proposed scheme can provide the efficient resource utilization as well as QoS provisioning.

본 논문은 SDN에서 QoS 특성을 고려한 차등적인 플로우 핸드오버 관리 방법을 제안하고자 한다. IoT 등 기존 네트워크와는 상이한 서비스들이 등장하고 있는 상황에서 기존의 네트워크는 일반적으로 플로우의 특성을 고려하지 않고 단일적인 핸드오버 방법을 제공하였다. 인터넷에서는 IP 연속성을 유지하면서 최소한의 QoS를 보장할 수 있는 핸드 오버 방법들이 현실적으로 제공되고 있고, 4G, 5G 등 모바일 네트워크에서는 QoS 특성을 고려하지 않고 모든 플로우들에 대해 엄격하게 QoS를 보장하여 핸드오버 방법이 제공되고 있다. 이에 따라 QoS 요구사항이 높은 플로우는 인터넷 상황에서 엄격한 QoS 요구사항을 만족시키면서 서비스 연속성이 보장되기 어렵고, 모바일 네트워크에서는 QoS 요구사항이 낮은 플로우와 높은 플로우의 구분이 없이 엄격한 핸드오버 방법이 제공되기 때문에 자원의 비효율적인 사용이 문제로 제시되고 있다. 본 논문에서는 SDN에서 SDN 컨트롤러에 제어 하에 QoS 요구사항에 따라 효율적인 네트워크 운영을 지원하기 위하여 각 flow 특성에 맞는 핸드오버 방법을 제공하고자 한다. 제안하는 방법은 네트워크 운영자 입장에서 효율적인 네트워크 자원 활용을 도모하고 동시에 플로우의 QoS 요구사항을 만족시키고자 한다.

Keywords

References

  1. D.W.Lee, K.Cho, and S.H.Lee, "Analysis on Smart Factory in IoT Environment," Journal of The Korea Internet of Things Society, Vol.5, No.2, pp.1-5, 2019. https://doi.org/10.20465/KIOTS.2019.5.2.001
  2. K.B.Jan,g, "A study on IoT platform for private electrical facilities management," Journal of The Korea Internet of Things Society, Vol.5, No.2, pp.103-110, 2019. https://doi.org/10.20465/KIOTS.2019.5.2.103
  3. D.G.Kim, H.S.Lee, S.Y.Kim, T.W.Kim, H.W.Lee, "LBS/GPS based Bicycle Safety Application with Arduino", Journal of The Korea Internet of Things Society, Vol.2, No.1, pp.7-15, 2016. https://doi.org/10.20465/KIOTS.2016.2.1.007
  4. J.Lee, Z.Yan, and I.You, "Enhancing QoS of Mobile Devices by a New Handover Process in PMIPv6 Networks," Wireless Personal Communications, Vol.61, pp.591-602, 2011. https://doi.org/10.1007/s11277-011-0422-4
  5. A.Magnano, X.Fei, A.Boukerche, and A.Loureiro, "A Novel Predictive Handover Protocol for Mobile IP in Vehicular Networks," IEEE Transactions on Vehicular Networks, Vol.65, No.10, pp.8476-8495, 2016. https://doi.org/10.1109/TVT.2015.2503703
  6. 3GPP TS 36.300 v.15.8.0 Release 13, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2, 2020.
  7. M.Tayyab, X.Gelabert, and R.Jantti, "A Survey on Handover Management: From LTE to NR," IEEE Access, Vol.7, pp.118907-118930, 2019. https://doi.org/10.1109/access.2019.2937405
  8. V.Yazici, U.C.Kozat, and M.O.Sunay, "A New control Plane for 5G Network Architecture with a Case Study on Unified Handoff, Mobility, and Routing Management," IEEE Communications Magazine, Vol.52, No.11, pp.76-85, 2014. https://doi.org/10.1109/MCOM.2014.6957146
  9. Y.W.Kyung, T.M.Nguyen, K.W.Hong, J.K.Park, and J.W.Park, "Software Defined Service Migration through Legacy Service Integration into 4G Networks and Future Evolutions," IEEE Communications Magazine, Vol.53, No.9, pp.108-114, 2015. https://doi.org/10.1109/MCOM.2015.7263353
  10. OpenFlow switch specification 1.5.1, [Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf, 2015.
  11. A.Doria et al., Forwarding and Control Element Separation (ForCES) Protocol Specification. [Online]. Available: http://tools.ietf.org/html/rfc5810
  12. K.Yap, T.Huang, M.Kobayashi, M.Chen, R.Sherwood, G.Parulkar, and N.McKeown, "Lossless Handover with n-casting between WiFi-WiMAX on OpenRoads," in Proc. ACM MOBICOMM, Vol.3, pp.40-52, 2009.
  13. S.Gundavelli, K.Leung, V.Devarapalli, K.Chowdhury, and B.Patil, (2008). Proxy mobile IPv6. IETF RFC5213.
  14. Y.Wang, J.Bi, and K.Zhang, "Design and Implementation of a Software-Defined Mobility Architecture for IP Networks," Springer Mobile Networks and Applications, Vol.20, pp.40-52, 2015. https://doi.org/10.1007/s11036-015-0579-2
  15. S.M.Raza, D.S.Kim, D.Shin, and H.Choo, "Leveraging Proxy Mobile IPv6 with SDN," Journal of Communications and Networks, Vol.18, No.3, pp.460-475, 2016. https://doi.org/10.1109/JCN.2016.000061
  16. Y.W.Kyung, S.H.Park, and J.W.Park, "SDN/NFV-based Scalable Mobile Service Integration for Gradual Network Evolution," Journal of Communications and Networks, Vol.19, No.6, pp.569-576, 2017. https://doi.org/10.1109/jcn.2017.000097
  17. H.Ko, I.S.Jang, J.W.Lee, S.H.Pack, and G.W.Lee, "SDN-based distributed mobility management for 5G," in Proc. IEEE International Conference on Consumer Electronics (ICCE), pp.116-117, 2017.
  18. Y.W.Kyung and J.W.Park, "Prioritized admission control with load distribution over multiple controllers for scalable SDN-based mobile networks," Springer Wireless Networks, Vol 25, pp.2963-2975, 2019. https://doi.org/10.1007/s11276-017-1615-x
  19. B.K.J.A-Shammari, N.A-Aboody, H.S.A-Raweshidy and B.A-Shammari, "IoT Traffic Management and Integration in the QoS Supported Network," IEEE Internet of Things Journal, Vol.5, No.1, pp.352-370, 2018. https://doi.org/10.1109/jiot.2017.2785219