DOI QR코드

DOI QR Code

Synthesis of Porous Cu-Co using Freeze Drying Process of Camphene Slurry with Oxide Composite Powders

산화물 복합분말 첨가 Camphene 슬러리의 동결건조 공정에 의한 Cu-Co 복합계 다공체 제조

  • Lee, Gyuhwi (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Han, Ju-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이규휘 (서울과학기술대학교 신소재공학과) ;
  • 한주연 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2020.05.11
  • Accepted : 2020.06.03
  • Published : 2020.06.28

Abstract

Porous Cu-14 wt% Co with aligned pores is produced by a freeze drying and sintering process. Unidirectional freezing of camphene slurry with CuO-Co3O4 powders is conducted, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The dried bodies are hydrogen-reduced at 500℃ and sintered at 800℃ for 1 h. The reduction behavior of the CuO-Co3O4 powder mixture is analyzed using a temperature-programmed reduction method in an Ar-10% H2 atmosphere. The sintered bodies show large and aligned parallel pores in the camphene growth direction. In addition, small pores are distributed around the internal walls of the large pores. The size and fraction of the pores decrease as the amount of solid powder added to the slurry increases. The change in pore characteristics according to the amount of the mixed powder is interpreted to be due to the rearrangement and accumulation behavior of the solid particles in the freezing process of the slurry.

Keywords

References

  1. M.-J. Suk and Y.-S. Kwon: J. Korean Powder Metall. Inst., 8 (2001) 215 (Korean).
  2. P. S. Liu and K. M. Liang: J. Mater. Sci., 36 (2001) 5059. https://doi.org/10.1023/A:1012483920628
  3. H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091. https://doi.org/10.1016/j.pmatsci.2006.09.001
  4. T. Ohji and M. Fukushima: Intern. Mater. Rev., 57 (2012) 115. https://doi.org/10.1179/1743280411Y.0000000006
  5. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  6. B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am. Ceram. Soc., 90 (2007) 1753. https://doi.org/10.1111/j.1551-2916.2007.01703.x
  7. J.-H. Jeong, S.-T. Oh and C.-Y. Hyun: J. Korean Powder Metall. Inst., 26 (2019) 6 (Korean). https://doi.org/10.4150/KPMI.2019.26.1.6
  8. A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten and G. Thomas: Phys. Rev. Lett., 68 (1992) 3745. https://doi.org/10.1103/PhysRevLett.68.3745
  9. Y. S. Park, C. Jung, C. Kim, T. Koo, C. Seok, I. Kwon and Y. Kim: Korean J. Mater. Res., 29 (2019) 92 (Korean). https://doi.org/10.3740/MRSK.2019.29.2.92
  10. J.-Y. Han, G. Lee, H. Kang and S.-T. Oh: J. Korean Powder Metall. Inst., 26 (2019) 410 (Korean). https://doi.org/10.4150/KPMI.2019.26.5.410
  11. S. D. Robertson, B. D. McNicol, J. H. De Baas, S. C. Kloet and J. W. Jenkins: J. Cataly., 37 (1975) 424. https://doi.org/10.1016/0021-9517(75)90179-7
  12. J. A. Rodriguez, J. Y. Kim, J. C. Hanson, M. Perez and A. I. Frenkel: Cataly. Lett., 85 (2003) 247. https://doi.org/10.1023/A:1022110200942
  13. H.-Y. Lin and Y.-W Chen: Mater. Chem. Phys., 85 (2004) 171. https://doi.org/10.1016/j.matchemphys.2003.12.028
  14. D.-G. Kim, K. H. Min, S.-Y. Chang, S.-T. Oh, C.-H. Lee and Y. D. Kim: Mater. Sci. Eng. A, 399 (2005) 326. https://doi.org/10.1016/j.msea.2005.04.010
  15. T. Nishizawa and K. Ishida: Bull. Alloy Phase Diagrams, 5 (1984) 161. https://doi.org/10.1007/BF02868953
  16. K. Araki and J. W. Halloran: J. Am Ceram. Soc., 88 (2005) 1108. https://doi.org/10.1111/j.1551-2916.2005.00176.x
  17. S. Deville: Adv. Eng. Mater., 10 (2008) 155. https://doi.org/10.1002/adem.200700270