• Title/Summary/Keyword: Hydrogen reduction of oxide powders

Search Result 35, Processing Time 0.025 seconds

Mo Powders Fabricated from MoO3 by Reduction in Hydrogen Gas

  • Hong, Seonghoon;Lee, Changsup;Oh, Changsup;Kil, Sangcheol;Kim, Yongha
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.445-448
    • /
    • 2012
  • We studied the effect of temperature and reaction time by investigating the various temperatures and reaction times in the reduction of molybdenum oxide ($MoO_3$) to molybdenum (Mo) powder in hydrogen gas. We also studied the effect of the reaction of reduction according to the various hydrogen gas flow rates. We surveyed the reduction from molybdenum oxide to molybdenum powder in hydrogen gas and checked two temperature ranges, one from $400^{\circ}C$ to $600^{\circ}C$ and the other from $700^{\circ}C$ to $900^{\circ}C$. We found that the reaction ratio of molybdenum oxide increased with an increasing temperature and also increased with an increasing reaction time, but hydrogen gas did not influence the reduction ratio of molybdenum oxide. We examined molybdenum powders fabricated by ball milling for two hours, using with X-ray diffraction (XRD) and a scanning electron microscopy (SEM).

Fabrication and Characterization of Nano-sized Fe-50 wt% Co Powder from Fe- and Co-nitrate (Fe- 및 Co-질산염을 이용한 Fe-50 wt% Co 나노분말의 합성 및 특성 평가)

  • Riu, Doh-Hyung;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.508-512
    • /
    • 2010
  • The optimum route to fabricate nano-sized Fe-50 wt% Co and hydrogen-reduction behavior of calcined Fe-/Conitrate was investigated. The powder mixture of metal oxides was prepared by solution mixing and calcination of Fe-/Co-nitrate. A DTA-TG and microstructural analysis revealed that the nitrates mixture by the calcination at $300^{\circ}C$ for 2 h was changed to Fe-oxide/$Co_3O_4$ composite powders with an average particle size of 100 nm. The reduction behavior of the calcined powders was analyzed by DTA-TG in a hydrogen atmosphere. The composite powders of Fe-oxide and Co3O4 changed to a Fe-Co phase with an average particle size of 40 nm in the temperature range of $260-420^{\circ}C$. In the TG analysis, a two-step reduction process relating to the presence of Fe3O4 and a CoO phase as the intermediate phase was observed. The hydrogen-reduction kinetics of the Fe-oxide/Co3O4 composite powders was evaluated by the amount of peak shift with heating rates in TG. The activation energies for the reduction, estimated by the slope of the Kissinger plot, were 96 kJ/mol in the peak temperature range of $231-297^{\circ}C$ and 83 kJ/mol of $290-390^{\circ}C$, respectively. The reported activation energy of 70.4-94.4 kJ/mol for the reduction of Fe- and Co-oxides is in reasonable agreement with the measured value in this study.

Fabrication of Nanostructured Fe-Co Alloy Powders by Hydrogen Reduction and its Magnetic Properties

  • Lee, Young-Jung;Lee, Baek-Hee;Kim, Gil-Su;Lee, Kyu-Hwan;Kim, Young-Do
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.120-121
    • /
    • 2006
  • Magnetic properties of nanostructured materials are affected by the microstructures such as grain size (or particle size), internal strain and crystal structure. Thus, it is necessary to study the synthesis of nanostructured materials to make significant improvements in their magnetic properties. In this study, nanostructured Fe-20at.%Co and Fe-50at.%Co alloy powders were prepared by hydrogen reduction from the two oxide powder mixtures, $Fe_2O_3$ and $Co_3O_4$. Furthermore, the effect of microstructure on the magnetic properties of hydrogen reduced Fe-Co alloy powders was examined using XRD, SEM, TEM, and VSM.

  • PDF

Analysis of the Change in Microstructures of Nano Copper Powders During the Hydrogen Reduction using X-ray Diffraction Patterns and Transmission Electron Microscope, and the Mechanical Property of Compacted Powders (X-선 회절 패턴 측정과 투과 전자 현미경을 이용한 구리 나노분말의 수소 환원 처리 시 발생하는 미세조직 변화 및 치밀화 시편의 물성 분석)

  • Ahn, Dong-Hyun;Lee, Dong Jun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relatively high temperature of $350^{\circ}C$ in order to eliminate surface oxide layers, which are the main obstacles for fabricating a nano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure before and after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patterns using the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD line profile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduction treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as the basis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of the particles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results demonstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders is achieved.

Synthesis of Ultrafine TiC-15%Co Powder by Thermochemical Method (열화학적 방법에 의한 초미립 TiC-15%Co 분말의 합성)

  • 홍성현;탁영우;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.281-287
    • /
    • 2003
  • Ultrafine TiC-15%Co powders were synthesized by a thermochemical process, including spray drying, calcination, and carbothermal reaction. Ti-Co oxide powders were prepared by spray drying of aqueous solution of titanium chloride and $Ti(OH)_2$ slurry, both containing cobalt nitrate, fellowed by calcination. The oxide powders were mixed with carbon powder to reduce and carburize at 1100~125$0^{\circ}C$ under argon or hydrogen atmosphere. Ultrafine TiC particles were formed by carbothermal reaction at 1200~125$0^{\circ}C$, which is significantly lower than the formation temperature (~1$700^{\circ}C$) of TiC particles prepared by conventional method. The oxygen content of TiC-15%Co powder synthesized under hydrogen atmosphere was lower than that synthesized under argon, suggesting that hydrogen accelerates the reduction rate of Ti-Co oxides. The size of TiC-15%Co powder was evaluated by FE-SEM and TEM and Identified to be smaller than 300 nm.

Hydrogen Reduction Behavior and Microstructure Characteristics of Ball-milled CuO-Co3O4 Powder Mixtures (볼 밀링한 CuO-Co3O4 혼합분말의 수소환원 거동과 미세조직 특성)

  • Han, Ju-Yeon;Lee, Gyuhwi;Kang, Hyunji;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.410-414
    • /
    • 2019
  • The hydrogen reduction behavior of the $CuO-SCo_3O_4$ powder mixture for the synthesis of the homogeneous Cu-15at%Co composite powder has been investigated. The composite powder is prepared by ball milling the oxide powders, followed by a hydrogen reduction process. The reduction behavior of the ball-milled powder mixture is analyzed by X-ray diffraction (XRD) and temperature-programmed reduction at different heating rates in an Ar-10%H2 atmosphere. The scanning electron microscopy and XRD results reveal that the hydrogen-reduced powder mixture is composed of fine agglomerates of nanosized Cu and Co particles. The hydrogen reduction kinetics is studied by determining the degree of peak shift as a function of the heating rate. The activation energies for the reduction of the oxide powders estimated from the slopes of the Kissinger plots are 58.1 kJ/mol and 65.8 kJ/mol, depending on the reduction reaction: CuO to Cu and $SCo_3O_4$ to Co, respectively. The measured temperature and activation energy for the reduction of $SCo_3O_4$ are explained on the basis of the effect of pre-reduced Cu particles.

A Study on the Reduction Mechanism of Tungsten and Copper Oxide Composite Powders (W-Cu산화물 복합분말의 환원 기구에 관한 연구)

  • Lee, Seong;Hong, Moon-Hee;Kim, Eun-Pyo;Lee, Sung-Ho;Noh, Joon-Woong
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.422-429
    • /
    • 2003
  • The reduction mechanism of the composite powders mixed with $WO_3$ and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20$0^{\circ}C$ to 30$0^{\circ}C$. Then, $WO_3$ powder is reduced to W $O_2$ via W $O_{2.9}$ and W $O_{2.72}$ at higher temperature region. Finally, the gaseous phase of $WO_3(OH)_2$ formed by reaction of $WO_2$ with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and $WO_3$ powder.

Fabrication Process of Al2O3/Cu Nanocomposite by Dispersion and Reduction of Cu Oxide (CU Oxide 분산 및 환원에 의한 Al2O3/Cu 나노복합재료의 제조공정)

  • Ko, Se-Jin;Min, Kyung-Ho;Kang, Kae-Myung;Kim, Young-Do;Moon, In-Hyung
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.656-660
    • /
    • 2002
  • It was investigated that $Al_2$$O_3$/Cu nanocomposite powder could be optimally prepared by dispersion and reduction of Cu oxide, and suitably consolidated by employing pulse electric current sintering (PECS) process. $\alpha$-$Al_2$$O_3$ and CuO powders were used as elemental powders. In order to obtain $Al_2$O$_3$ embedded by finely and homogeneously dispersed CuO particles, the elemental powders were high energy ball milled at the rotating speed of 900 rpm, with the milling time varying up to 10 h. The milled powders were heat treated at $350^{\circ}C$ in H$_2$ atmosphere for 30 min to reduce CuO into Cu. The reduced powders were subsequently sintered by employing PECS process. The composites sintered at $1250^{\circ}C$ for 5 min showed the relative density of above 98%. The fracture toughness of the $Al_2$$O_3$/Cu nanocomposite was as high as 4.9MPa.$m^{1}$2//, being 1.3 times the value of pure $Al_2$$O_3$ sintered under the same condition.

Synthesis of NiTi Alloy Powder by the Reaction of NiO-TiH2 Mixing Powders (NiO-TiH2 혼합분말의 반응을 이용한 NiTi 합금분말 제조)

  • Jeon, Ki Cheol;Lee, Han-Eol;Yim, Da-Mi;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.266-270
    • /
    • 2015
  • The synthesis of NiTi alloy powders by hydrogen reduction and dehydrogenation process of NiO and $TiH_2$ powder mixtures is investigated. Mixtures of NiO and $TiH_2$ powders are prepared by simple mixing for 1 h or ball milling for 24 h. Simple-mixed mixture shows that fine NiO particles are homogeneously coated on the surface of $TiH_2$ powders, whereas ball milled one exhibits the morphology with mixing of fine NiO and $TiH_2$ particles. Thermogravimetric analysis in hydrogen atmosphere reveals that the NiO and $TiH_2$ phase are changed to metallic Ni and Ti in the temperature range of 260 to $290^{\circ}C$ and 553 to $639^{\circ}C$, respectively. In the simple-mixed powders by heat-up to $700^{\circ}C$, agglomerates with solid particles and solidified liquid phase are observed, and the size of agglomerates is increased at $1000^{\circ}C$. From the XRD analysis, the presence of liquid phase is explained by the formation and melting of $NiTi_2$ inter-metallic compound due to an exothermic reaction between Ni and Ti. The simple-mixed powders, heated to $1000^{\circ}C$, lead to the formation of NiTi phase but additional Ni-, Ti-rich and Ti-oxide phases. In contrast, the microstructure of ball-milled powders is characterized by the neck-grown particles, forming $Ni_3Ti$, Ti-oxide and unreacted Ni phase.

Synthesis of Porous Cu-Co using Freeze Drying Process of Camphene Slurry with Oxide Composite Powders (산화물 복합분말 첨가 Camphene 슬러리의 동결건조 공정에 의한 Cu-Co 복합계 다공체 제조)

  • Lee, Gyuhwi;Han, Ju-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.193-197
    • /
    • 2020
  • Porous Cu-14 wt% Co with aligned pores is produced by a freeze drying and sintering process. Unidirectional freezing of camphene slurry with CuO-Co3O4 powders is conducted, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The dried bodies are hydrogen-reduced at 500℃ and sintered at 800℃ for 1 h. The reduction behavior of the CuO-Co3O4 powder mixture is analyzed using a temperature-programmed reduction method in an Ar-10% H2 atmosphere. The sintered bodies show large and aligned parallel pores in the camphene growth direction. In addition, small pores are distributed around the internal walls of the large pores. The size and fraction of the pores decrease as the amount of solid powder added to the slurry increases. The change in pore characteristics according to the amount of the mixed powder is interpreted to be due to the rearrangement and accumulation behavior of the solid particles in the freezing process of the slurry.