DOI QR코드

DOI QR Code

Genome-Wide Analysis Identifies NURR1-Controlled Network of New Synapse Formation and Cell Cycle Arrest in Human Neural Stem Cells

  • Kim, Soo Min (Department of Brain Science, Ajou University School of Medicine) ;
  • Cho, Soo Young (National Cancer Center) ;
  • Kim, Min Woong (Department of Brain Science, Ajou University School of Medicine) ;
  • Roh, Seung Ryul (Department of Brain Science, Ajou University School of Medicine) ;
  • Shin, Hee Sun (Department of Brain Science, Ajou University School of Medicine) ;
  • Suh, Young Ho (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Geum, Dongho (Department of Medical Science, Korea University Medical School) ;
  • Lee, Myung Ae (Department of Brain Science, Ajou University School of Medicine)
  • Received : 2020.03.19
  • Accepted : 2020.05.09
  • Published : 2020.06.30

Abstract

Nuclear receptor-related 1 (Nurr1) protein has been identified as an obligatory transcription factor in midbrain dopaminergic neurogenesis, but the global set of human NURR1 target genes remains unexplored. Here, we identified direct gene targets of NURR1 by analyzing genome-wide differential expression of NURR1 together with NURR1 consensus sites in three human neural stem cell (hNSC) lines. Microarray data were validated by quantitative PCR in hNSCs and mouse embryonic brains and through comparison to published human data, including genome-wide association study hits and the BioGPS gene expression atlas. Our analysis identified ~40 NURR1 direct target genes, many of them involved in essential protein modules such as synapse formation, neuronal cell migration during brain development, and cell cycle progression and DNA replication. Specifically, expression of genes related to synapse formation and neuronal cell migration correlated tightly with NURR1 expression, whereas cell cycle progression correlated negatively with it, precisely recapitulating midbrain dopaminergic development. Overall, this systematic examination of NURR1-controlled regulatory networks provides important insights into this protein's biological functions in dopamine-based neurogenesis.

Keywords

References

  1. Andersson, E.R., Salto, C., Villaescusa, J.C., Cajanek, L., Yang, S., Bryjova, L., Nagy, I.I., Vainio, S.J., Ramirez, C., Bryja, V., et al. (2013). Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, E602-E610. https://doi.org/10.1073/pnas.1208524110
  2. Arama, J., Boulay, A.C., Bosc, C., Delphin, C., Loew, D., Rostaing, P., Amigou, E., Ezan, P., Wingertsmann, L., Guillaud, L., et al. (2012). Bmcc1s, a novel brain-isoform of Bmcc1, affects cell morphology by regulating MAP6/STOP functions. PLoS One 7, e35488. https://doi.org/10.1371/journal.pone.0035488
  3. Bernard, A., Lubbers, L.S., Tanis, K.Q., Luo, R., Podtelezhnikov, A.A., Finney, E.M., McWhorter, M.M., Serikawa, K., Lemon, T., Morgan, R., et al. (2012). Transcriptional architecture of the primate neocortex. Neuron 73, 1083-1099. https://doi.org/10.1016/j.neuron.2012.03.002
  4. Bharathan, N.K. and Dickinson, A. (2019). Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo. Dev. Biol. 450, 115-131. https://doi.org/10.1016/j.ydbio.2019.03.010
  5. Blakely, B.D., Bye, C.R., Fernando, C.V., Horne, M.K., Macheda, M.L., Stacker, S.A., Arenas, E., and Parish, C.L. (2011). Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS One 6, e18373. https://doi.org/10.1371/journal.pone.0018373
  6. Blunk, A.D., Akbergenova, Y., Cho, R.W., Lee, J., Walldorf, U., Xu, K., Zhong, G., Zhuang, X., and Littleton, J.T. (2014). Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction. Mol. Cell. Neurosci. 61, 241-254. https://doi.org/10.1016/j.mcn.2014.07.005
  7. Bohland, J.W., Bokil, H., Pathak, S.D., Lee, C.K., Ng, L., Lau, C., Kuan, C., Hawrylycz, M., and Mitra, P.P. (2010). Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods 50, 105-112. https://doi.org/10.1016/j.ymeth.2009.09.001
  8. Buervenich, S., Carmine, A., Arvidsson, M., Xiang, F., Zhang, Z., Sydow, O., Jonsson, E.G., Sedvall, G.C., Leonard, S., Ross, R.G., et al. (2000). NURR1 mutations in cases of schizophrenia and manic-depressive disorder. Am. J. Med. Genet. 96, 808-813. https://doi.org/10.1002/1096-8628(20001204)96:6<808::AID-AJMG23>3.0.CO;2-E
  9. Castillo, S.O., Xiao, Q., Kostrouch, Z., Dozin, B., and Nikodem, V.M. (1998). A divergent role of COOH-terminal domains in Nurr1 and Nur77 transactivation. Gene Expr. 7, 1-12.
  10. Cui, H., Wang, Q., Lei, Z., Feng, M., Zhao, Z., Wang, Y., and Wei, G. (2019). DTL promotes cancer progression by PDCD4 ubiquitin-dependent degradation. J. Exp. Clin. Cancer Res. 38, 350. https://doi.org/10.1186/s13046-019-1358-x
  11. D'Arco, F., Alves, C.A., Raybaud, C., Chong, W., Ishak, G.E., Ramji, S., Grima, M., Barkovich, A.J., and Ganesan, V. (2018). Expanding the distinctive neuroimaging phenotype of ACTA2 mutations. AJNR Am. J. Neuroradiol. 39, 2126-2131. https://doi.org/10.3174/ajnr.A5823
  12. Deng, Q., Andersson, E., Hedlund, E., Alekseenko, Z., Coppola, E., Panman, L., Millonig, J.H., Brunet, J.F., Ericson, J., and Perlmann, T. (2011). Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. Development 138, 3399-3408. https://doi.org/10.1242/dev.065482
  13. Di Salvio, M., Di Giovannantonio, L.G., Acampora, D., Prosperi, R., Omodei, D., Prakash, N., Wurst, W., and Simeone, A. (2010). Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat. Neurosci. 13, 1481-1488. https://doi.org/10.1038/nn.2661
  14. Dobolyi, A. and Palkovits, M. (2008). Expression of latent transforming growth factor beta binding proteins in the rat brain. J. Comp. Neurol. 507, 1393-1408. https://doi.org/10.1002/cne.21621
  15. Elsworth, J.D. and Roth, R.H. (1997). Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson's disease. Exp. Neurol. 144, 4-9. https://doi.org/10.1006/exnr.1996.6379
  16. Frazer, K.A., Pachter, L., Poliakov, A., Rubin, E.M., and Dubchak, I. (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273-W279. https://doi.org/10.1093/nar/gkh458
  17. Fu, X.L., Zhou, X.X., Shi, Z., and Zheng, W.C. (2019). Adult-onset mitochondrial encephalopathy in association with the MT-ND3 T10158C mutation exhibits unique characteristics: a case report. World J. Clin. Cases 7, 1066-1072. https://doi.org/10.12998/wjcc.v7.i9.1066
  18. Han, K., Chen, H., Gennarino, V.A., Richman, R., Lu, H.C., and Zoghbi, H.Y. (2015). Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice. Hum. Mol. Genet. 24, 1813-1823. https://doi.org/10.1093/hmg/ddu595
  19. Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., van de Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391-399. https://doi.org/10.1038/nature11405
  20. Huttlin, E.L., Ting, L., Bruckner, R.J., Gebreab, F., Gygi, M.P., Szpyt, J., Tam, S., Zarraga, G., Colby, G., Baltier, K., et al. (2015). The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425-440. https://doi.org/10.1016/j.cell.2015.06.043
  21. Im, J.S., Ki, S.H., Farina, A., Jung, D.S., Hurwitz, J., and Lee, J.K. (2009). Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc. Natl. Acad. Sci. U. S. A. 106, 15628-15632. https://doi.org/10.1073/pnas.0908039106
  22. Inestrosa, N.C. and Arenas, E. (2010). Emerging roles of Wnts in the adult nervous system. Nat. Rev. Neurosci. 11, 77-86. https://doi.org/10.1038/nrn2755
  23. Irie, K., Tsujimura, K., Nakashima, H., and Nakashima, K. (2016). MicroRNA-214 promotes dendritic development by targeting the schizophrenia-associated gene quaking (Qki). J. Biol. Chem. 291, 13891-13904. https://doi.org/10.1074/jbc.M115.705749
  24. Jacobs, F.M., van der Linden, A.J., Wang, Y., von Oerthel, L., Sul, H.S., Burbach, J.P., and Smidt, M.P. (2009a). Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development 136, 2363-2373. https://doi.org/10.1242/dev.037556
  25. Jacobs, F.M., van Erp, S., van der Linden, A.J., von Oerthel, L., Burbach, J.P., and Smidt, M.P. (2009b). Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136, 531-540. https://doi.org/10.1242/dev.029769
  26. Jiangqiao, Z., Tao, Q., Zhongbao, C., Xiaoxiong, M., Long, Z., Jilin, Z., and Tianyu, W. (2019). Anti-silencing function 1B histone chaperone promotes cell proliferation and migration via activation of the AKT pathway in clear cell renal cell carcinoma. Biochem. Biophys. Res. Commun. 511, 165-172. https://doi.org/10.1016/j.bbrc.2019.02.060
  27. Kadkhodaei, B., Alvarsson, A., Schintu, N., Ramskold, D., Volakakis, N., Joodmardi, E., Yoshitake, T., Kehr, J., Decressac, M., Bjorklund, A., et al. (2013). Transcription factor Nurr1 maintains fiber integrity and nuclearencoded mitochondrial gene expression in dopamine neurons. Proc. Natl. Acad. Sci. U. S. A. 110, 2360-2365. https://doi.org/10.1073/pnas.1221077110
  28. Kadoyama, K., Matsuura, K., Takano, M., Maekura, K., Inoue, Y., and Matsuyama, S. (2019). Changes in the expression of prefoldin subunit 5 depending on synaptic plasticity in the mouse hippocampus. Neurosci. Lett. 712, 134484. https://doi.org/10.1016/j.neulet.2019.134484
  29. Kasper, J.M., McCue, D.L., Milton, A.J., Szwed, A., Sampson, C.M., Huang, M., Carlton, S., Meltzer, H.Y., Cunningham, K.A., and Hommel, J.D. (2016). Gamma-aminobutyric acidergic projections from the dorsal raphe to the nucleus accumbens are regulated by neuromedin U. Biol. Psychiatry 80, 878-887. https://doi.org/10.1016/j.biopsych.2016.02.031
  30. Kim, S.U. (2004). Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24, 159-171. https://doi.org/10.1111/j.1440-1789.2004.00552.x
  31. Kim, S.U., Nakagawa, E., Hatori, K., Nagai, A., Lee, M.A., and Bang, J.H. (2002). Production of immortalized human neural crest stem cells. Methods Mol. Biol. 198, 55-65.
  32. Kim, T., Kim, K., Lee, S.H., So, H.S., Lee, J., Kim, N., and Choi, Y. (2009). Identification of LRRc17 as a negative regulator of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast differentiation. J. Biol. Chem. 284, 15308-15316. https://doi.org/10.1074/jbc.M807722200
  33. Kim, T.E., Seo, J.S., Yang, J.W., Kim, M.W., Kausar, R., Joe, E., Kim, B.Y., and Lee, M.A. (2013). Nurr1 represses tyrosine hydroxylase expression via SIRT1 in human neural stem cells. PLoS One 8, e71469. https://doi.org/10.1371/journal.pone.0071469
  34. La Manno, G., Gyllborg, D., Codeluppi, S., Nishimura, K., Salto, C., Zeisel, A., Borm, L.E., Stott, S.R.W., Toledo, E.M., Villaescusa, J.C., et al. (2016). Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566-580.e19. https://doi.org/10.1016/j.cell.2016.09.027
  35. Lee, K.S., Bang, H., Choi, J.K., and Kim, K. (2020). Accelerated evolution of the regulatory sequences of brain development in the human genome. Mol. Cells 43, 331-339. https://doi.org/10.14348/molcells.2020.2282
  36. Lee, P.H., Yamada, T., Park, C.S., Shen, Y., Puppi, M., and Lacorazza, H.D. (2015). G0S2 modulates homeostatic proliferation of naive CD8(+) T cells and inhibits oxidative phosphorylation in mitochondria. Immunol. Cell Biol. 93, 605-615. https://doi.org/10.1038/icb.2015.9
  37. Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., Byrnes, E.J., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176. https://doi.org/10.1038/nature05453
  38. Li, L., Wu, X., Yue, H.Y., Zhu, Y.C., and Xu, J. (2016a). Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons. J. Neurochem. 138, 60-73. https://doi.org/10.1111/jnc.13635
  39. Li, M.J., Liu, Z., Wang, P., Wong, M.P., Nelson, M.R., Kocher, J.P., Yeager, M., Sham, P.C., Chanock, S.J., Xia, Z., et al. (2016b). GWASdb v2: an update database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 44, D869-D876. https://doi.org/10.1093/nar/gkv1317
  40. Li, M.J., Wang, P., Liu, X., Lim, E.L., Wang, Z., Yeager, M., Wong, M.P., Sham, P.C., Chanock, S.J., and Wang, J. (2012). GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 40, D1047-D1054. https://doi.org/10.1093/nar/gkr1182
  41. Liu, R. and Jin, J.P. (2016). Calponin isoforms CNN1, CNN2 and CNN3: regulators for actin cytoskeleton functions in smooth muscle and nonmuscle cells. Gene 585, 143-153. https://doi.org/10.1016/j.gene.2016.02.040
  42. Lucchesi, W., Mizuno, K., and Giese, K.P. (2011). Novel insights into CaMKII function and regulation during memory formation. Brain Res. Bull. 85, 2-8. https://doi.org/10.1016/j.brainresbull.2010.10.009
  43. Marley, A. and von Zastrow, M. (2010). Dysbindin promotes the postendocytic sorting of G protein-coupled receptors to lysosomes. PLoS One 5, e9325. https://doi.org/10.1371/journal.pone.0009325
  44. Myers, E.M., Bartlett, C.W., Machiraju, R., and Bohland, J.W. (2015). An integrative analysis of regional gene expression profiles in the human brain. Methods 73, 54-70. https://doi.org/10.1016/j.ymeth.2014.12.010
  45. Ng, L., Bernard, A., Lau, C., Overly, C.C., Dong, H.W., Kuan, C., Pathak, S., Sunkin, S.M., Dang, C., Bohland, J.W., et al. (2009). An anatomic gene expression atlas of the adult mouse brain. Nat. Neurosci. 12, 356-362. https://doi.org/10.1038/nn.2281
  46. Panman, L., Papathanou, M., Laguna, A., Oosterveen, T., Volakakis, N., Acampora, D., Kurtsdotter, I., Yoshitake, T., Kehr, J., Joodmardi, E., et al. (2014). Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep. 8, 1018-1025. https://doi.org/10.1016/j.celrep.2014.07.016
  47. Pennings, J.L., Kuc, S., Rodenburg, W., Koster, M.P., Schielen, P.C., and de Vries, A. (2011). Integrative data mining to identify novel candidate serum biomarkers for pre-eclampsia screening. Prenat. Diagn. 31, 1153-1159. https://doi.org/10.1002/pd.2850
  48. Perconti, G., Ferro, A., Amato, F., Rubino, P., Randazzo, D., Wolff, T., Feo, S., and Giallongo, A. (2007). The kelch protein NS1-BP interacts with alphaenolase/ MBP-1 and is involved in c-Myc gene transcriptional control. Biochim. Biophys. Acta 1773, 1774-1785. https://doi.org/10.1016/j.bbamcr.2007.09.002
  49. Perlmann, T. and Jansson, L. (1995). A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev. 9, 769-782. https://doi.org/10.1101/gad.9.7.769
  50. Perlmann, T. and Wallen-Mackenzie, A. (2004). Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell Tissue Res. 318, 45-52. https://doi.org/10.1007/s00441-004-0974-7
  51. Polak, B., Risteski, P., Lesjak, S., and Tolic, I.M. (2017). PRC1-labeled microtubule bundles and kinetochore pairs show one-to-one association in metaphase. EMBO Rep. 18, 217-230. https://doi.org/10.15252/embr.201642650
  52. Prakash, N. and Wurst, W. (2006). Genetic networks controlling the development of midbrain dopaminergic neurons. J. Physiol. 575, 403-410. https://doi.org/10.1113/jphysiol.2006.113464
  53. Rami, G., Caillard, O., Medina, I., Pellegrino, C., Fattoum, A., Ben-Ari, Y., and Ferhat, L. (2006). Change in the shape and density of dendritic spines caused by overexpression of acidic calponin in cultured hippocampal neurons. Hippocampus 16, 183-197. https://doi.org/10.1002/hipo.20145
  54. Saha, S., Ramanathan, A., and Rangarajan, P.N. (2006). Regulation of Ca2+/ calmodulin kinase II inhibitor alpha (CaMKIINalpha) in virus-infected mouse brain. Biochem. Biophys. Res. Commun. 350, 444-449. https://doi.org/10.1016/j.bbrc.2006.09.066
  55. Saucedo-Cardenas, O., Quintana-Hau, J.D., Le, W.D., Smidt, M.P., Cox, J.J., De Mayo, F., Burbach, J.P., and Conneely, O.M. (1998). Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl. Acad. Sci. U. S. A. 95, 4013-4018. https://doi.org/10.1073/pnas.95.7.4013
  56. Seiradake, E., del Toro, D., Nagel, D., Cop, F., Hartl, R., Ruff, T., Seyit- Bremer, G., Harlos, K., Border, E.C., Acker-Palmer, A., et al. (2014). FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. Neuron 84, 370-385. https://doi.org/10.1016/j.neuron.2014.10.008
  57. Sharma, V.K., Singh, A., Srivastava, S.K., Kumar, V., Gardi, N.L., Nalwa, A., Dinda, A.K., Chattopadhyay, P., and Yadav, S. (2016). Increased expression of platelet-derived growth factor associated protein-1 is associated with PDGF-B mediated glioma progression. Int. J. Biochem. Cell Biol. 78, 194-205. https://doi.org/10.1016/j.biocel.2016.07.016
  58. Shastry, B.S. (2001). Parkinson disease: etiology, pathogenesis and future of gene therapy. Neurosci. Res. 41, 5-12. https://doi.org/10.1016/S0168-0102(01)00254-1
  59. Sia, G.M., Clem, R.L., and Huganir, R.L. (2013). The human languageassociated gene SRPX2 regulates synapse formation and vocalization in mice. Science 342, 987-991. https://doi.org/10.1126/science.1245079
  60. Smits, S.M., Burbach, J.P., and Smidt, M.P. (2006). Developmental origin and fate of meso-diencephalic dopamine neurons. Prog. Neurobiol. 78, 1-16. https://doi.org/10.1016/j.pneurobio.2005.12.003
  61. Soteros, B.M., Cong, Q., Palmer, C.R., and Sia, G.M. (2018). Sociability and synapse subtype-specific defects in mice lacking SRPX2, a languageassociated gene. PLoS One 13, e0199399. https://doi.org/10.1371/journal.pone.0199399
  62. Sousa, K.M., Mira, H., Hall, A.C., Jansson-Sjostrand, L., Kusakabe, M., and Arenas, E. (2007). Microarray analyses support a role for Nurr1 in resistance to oxidative stress and neuronal differentiation in neural stem cells. Stem Cells 25, 511-519. https://doi.org/10.1634/stemcells.2006-0238
  63. Tan, M., Cha, C., Ye, Y., Zhang, J., Li, S., Wu, F., Gong, S., and Guo, G. (2015). CRMP4 and CRMP2 interact to coordinate cytoskeleton dynamics, regulating growth cone development and axon elongation. Neural Plast. 2015, 947423. https://doi.org/10.1155/2015/947423
  64. Theofilopoulos, S., Wang, Y., Kitambi, S.S., Sacchetti, P., Sousa, K.M., Bodin, K., Kirk, J., Salto, C., Gustafsson, M., Toledo, E.M., et al. (2013). Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nat. Chem. Biol. 9, 126-133. https://doi.org/10.1038/nchembio.1156
  65. Van den Heuvel, D.M. and Pasterkamp, R.J. (2008). Getting connected in the dopamine system. Prog. Neurobiol. 85, 75-93. https://doi.org/10.1016/j.pneurobio.2008.01.003
  66. Vuillermot, S., Joodmardi, E., Perlmann, T., Ove Ogren, S., Feldon, J., and Meyer, U. (2011). Schizophrenia-relevant behaviors in a genetic mouse model of constitutive Nurr1 deficiency. Genes Brain Behav. 10, 589-603. https://doi.org/10.1111/j.1601-183X.2011.00698.x
  67. Wallen, A. and Perlmann, T. (2003). Transcriptional control of dopamine neuron development. Ann. N. Y. Acad. Sci. 991, 48-60. https://doi.org/10.1111/j.1749-6632.2003.tb07462.x
  68. Wallen, A., Zetterstrom, R.H., Solomin, L., Arvidsson, M., Olson, L., and Perlmann, T. (1999). Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp. Cell Res. 253, 737-746. https://doi.org/10.1006/excr.1999.4691
  69. Wang, X., Tian, Q.B., Okano, A., Sakagami, H., Moon, I.S., Kondo, H., Endo, S., and Suzuki, T. (2005). BAALC 1-6-8 protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation, and interacts with alpha, but not beta, subunit of Ca/calmodulin-dependent protein kinase II. J. Neurochem. 92, 647-659. https://doi.org/10.1111/j.1471-4159.2004.02902.x
  70. Watanabe, S., Endo, S., Oshima, E., Hoshi, T., Higashi, H., Yamada, K., Tohyama, K., Yamashita, T., and Hirabayashi, Y. (2010). Glycosphingolipid synthesis in cerebellar Purkinje neurons: roles in myelin formation and axonal homeostasis. Glia 58, 1197-1207. https://doi.org/10.1002/glia.20999
  71. Wu, C., Jin, X., Tsueng, G., Afrasiabi, C., and Su, A.I. (2016). BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res. 44, D313-D316. https://doi.org/10.1093/nar/gkv1104
  72. Xing, G., Zhang, L., Russell, S., and Post, R. (2006). Reduction of dopaminerelated transcription factors Nurr1 and NGFI-B in the prefrontal cortex in schizophrenia and bipolar disorders. Schizophr. Res. 84, 36-56. https://doi.org/10.1016/j.schres.2005.11.006
  73. Yamada, T., Park, C.S., and Lacorazza, H.D. (2013). Genetic control of quiescence in hematopoietic stem cells. Cell Cycle 12, 2376-2383. https://doi.org/10.4161/cc.25416
  74. Yamagishi, S., Hampel, F., Hata, K., Del Toro, D., Schwark, M., Kvachnina, E., Bastmeyer, M., Yamashita, T., Tarabykin, V., Klein, R., et al. (2011). FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons. EMBO J. 30, 2920-2933. https://doi.org/10.1038/emboj.2011.189
  75. Yang, S., Edman, L.C., Sanchez-Alcaniz, J.A., Fritz, N., Bonilla, S., Hecht, J., Uhlen, P., Pleasure, S.J., Villaescusa, J.C., Marin, O., et al. (2013). Cxcl12/ Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Development 140, 4554-4564. https://doi.org/10.1242/dev.098145
  76. Zetterstrom, R.H., Solomin, L., Jansson, L., Hoffer, B.J., Olson, L., and Perlmann, T. (1997). Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248-250. https://doi.org/10.1126/science.276.5310.248
  77. Zhang, X., Liang, D., Guo, B., Deng, W., Chi, Z.H., Cai, Y., Wang, L., and Ma, J. (2013). Zinc transporter 5 and zinc transporter 7 induced by high glucose protects peritoneal mesothelial cells from undergoing apoptosis. Cell. Signal. 25, 999-1010. https://doi.org/10.1016/j.cellsig.2012.12.013

Cited by

  1. Nr4a2 Transcription Factor in Hippocampal Synaptic Plasticity, Memory and Cognitive Dysfunction: A Perspective Review vol.14, 2020, https://doi.org/10.3389/fnmol.2021.786226