• Title/Summary/Keyword: human neural stem cell

Search Result 67, Processing Time 0.031 seconds

Monitoring the Differentiation and Migration Patterns of Neural Cells Derived from Human Embryonic Stem Cells Using a Microfluidic Culture System

  • Lee, Nayeon;Park, Jae Woo;Kim, Hyung Joon;Yeon, Ju Hun;Kwon, Jihye;Ko, Jung Jae;Oh, Seung-Hun;Kim, Hyun Sook;Kim, Aeri;Han, Baek Soo;Lee, Sang Chul;Jeon, Noo Li;Song, Jihwan
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.497-502
    • /
    • 2014
  • Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

In Vitro Expansion of Homogeneous Neural Precursor Cells Derived from Human Embryonic Stem Cells

  • Na, Deuk-Chae;Kim, Se-Hee;Choi, Won-Ik;Hwang, Hyun-Jin;Han, In-Bo;Kim, Jae-Hwan;Park, Keun-Hong;Chung, Hyung-Min;Choi, Seong-Jun
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.267-272
    • /
    • 2007
  • Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and have the capacity to differentiate into various types of cells in the body. Hence, these cells may potentially be an indefinite source of cells for cell therapy in various degenerative diseases including neuronal disorders. For clinical applications of human ES cells, directed differentiation of these cells would be necessary. The objective of this study is to develop the culture condition for the expansion of neural precursor cells derived from human ES cells. Human ES cells were able to differentiate into neural precursor cells upon a stepwise culture condition. Neural precursor cells were propagated up to 5000-fold in cell numbers over 12-week period of culture and evaluated for their characteristics. Expressions of sox1 and pax6 transcripts were dramatically up-regulated along the differentiation stages by RT-PCR analysis. In contrast, expressions of oct4 and nanog transcripts were completely disappeared in neural precursor cells. Expressions of nestin, pax6 and sox1 were also confirmed in neural precursor cells by immunocytochemical analysis. Upon differentiation, the expanded neural precursor cells differentiated into neurons, astrocytes, and oligodendrocytes. In immunocytochemical analysis, expressions of type III ${\beta}$-tubulin and MAP2ab were observed Presence of astrocytes and oligodendrocytes were also confirmed by expressions of GFAP and O4, respectively. Results of this study demonstrate the feasibility of long-term expansion of human ES cell-derived neural precursor cells in vitro, which can be a potential source of the cells for the treatment of neurodegenerative disorders.

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: I. Effect of Neurotrophic Factors on Neural Progenitor Cells

  • Kim Eun-Yeong;Jo Hyeon-Jeong;Choe Gyeong-Hui;An So-Yeon;Jeong Gil-Saeng;Park Se-Pil;Im Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.18-18
    • /
    • 2002
  • This study was to investigate the effect of neurotrophic factors on neural cell differentiation in vitro derived from human embryonic stem (hES, MB03) cells. For neural progenitor cell formation derived from hES cells, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for 7 - 10 days, 20 ng/㎖ of bFGF added N2 medium) from EB. And then finally for the differentiation into mature neuron cells, neural progenitor cells were cultured in ⅰ) N2 medium (without bFGF), ⅱ) N2 supplemented with brain derived neurotrophic factor (BDNF, 5ng/㎖) or ⅲ) N2 supplemented with platelet derived growth factor-bb (PDGF-bb, 20ng/㎖) for 2 weeks. (omitted)

  • PDF

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: II. Generation of Specific Neurons from Neural Progenitor Cells Treated with BDNF and PDGF

  • Jo Hyeon-Jeong;Kim Eun-Yeong;Choe Gyeong-Hui;An So-Yeon;Park Se-Pil;Im Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.84-84
    • /
    • 2002
  • This study was to investigate generation of the specific neuronal cell in vitro from the neural progenitors derived from human embryonic stem (hES, MB03) cells. For the neural progenitor cell formation, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for 7-10 days, 20 ng/㎖ of bFGF added N2 medium) from EB. And then for the differentiation into neuronal cells, neural progenitor cells were cultured in N2 medium (without bFGF) supplemented with brain derived neurotrophic factor (BDNF, 5 ng/㎖) or platelet derived growth factor-bb (pDGF-bb, 20ng/㎖) for 2 weeks. (omitted)

  • PDF

Cytolytic Activities of Taxol on Neural Stem Cells

  • Lee, In-Soo;Han, Hye-Eun;Lee, Hye-Young;Kim, Seung-U.;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • Stem cells have been the subject of increasing scientific interest because of their utility in numerous biomedical applications. Stem cells are capable of renewing themselves; that is, they can be continuously cultured in an undifferentiated state, giving rise to more specialized cells of the human body. Therefore, stem cells are an important new tools for developing unique, in vitro model systems to test drugs and chemicals and a potential to predict or anticipate toxicity in humans. In the present study, in vitro cultured F3 immortalized human neural stem cell line and in vivo adult Sprague Dawley rats was used to evaluate the cytotoxicity of anticancer drug paclitaxel. In vitro apoptotic activity of paclitaxel was evaluated in F3 cell line by a MTT assay and DAPI test. The cell death was induced with the treatment of 20 nM paclitaxel and chromatin degradation was detected by DAPI staining, which was analyzed by fluorescent microscope. In vivo studies, we also observed nestin immunoreactivity on subventricular zone, which is stem cell rich region in the adult brain of the SD rat. Immunofluorescent staining result shows that pixel intensities of nestin were decreased in a dose dependent manner. These results suggest that paclitaxel is able to induce cytotoxic activity both in F3 neural stem cell line and neural stem cell in SD rat brain.

  • PDF

Comparison of Neural Cell Differentiation of Human Adipose Mesenchymal Stem Cells Derived from Young and Old Ages (연령별 지방 중간엽 유래 줄기세포의 신경세포로의 분화 능력 비교)

  • Jo, Jung-Youn;Kang, Sung-Keun;Choi, In-Su;Ra, Jeong-Chan
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.227-237
    • /
    • 2009
  • Recently, adipose mesenchymal stem cells (AdMSC) that are similar to bone marrow MSC and blood derived MSC are thought to be another source for stem cell therapy. However, the diseases that can be applied for stem cells therapy are age-dependent degenerative diseases. Accordingly, the present study investigated the growth and differentiation potential to neural cells of human AdMSC (hAdMSC) obtained from aged thirty, forty and fifty. The growth of cells and cell viability were measured by passage and neural differentiation of hAdMSC was induced in neural differentiation condition for 10 days. Our results demonstrated that cell number, viability and morphology were not different from hAdMSC by age and passage. Immunofluorescence analysis of neural cell marker (TuJ1, NSE, Sox2, GFAP or MAP2) demonstrated no significant differences in neural cell differentiation by age and passage. As the number of passage was increased, the mRNA level of MAP2 and Sox2 was decreased in hAdMSC from age of 50 compared to hAdMSC from age of 30. In conclusion, the present study demonstrated that ability of neural cell differentiation of hAdMSC was maintained with ages, suggesting that autologous stem cells from aged people can be applied for stem cell therapy with age-dependent neural disease with the same stem cell quality and ability as stem cell derived from young age.

  • PDF

Derivation of Neural Precursor Cells from Human Embryonic Stem Cells

  • Kim Sehee;Hong Ji Young;Joo So Yeon;Kim Jae Hwan;Moon Shin Yong;Yoon Hyun Soo;Kim Doo Han;Chung Hyung Min;Choi Seong-Jun
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.247-252
    • /
    • 2004
  • Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo. Human ES cells have the capacity to differentiate into various types of cells in the body. Human ES cells are indefinite source of cells for cell therapy in various degenerative disorders including neuronal disorders. Directed differentiation of human ES cells is a prerequisite for their clinical application. The objective of this study is to develop the culture condition for the derivation of neural precursor cells from human ES cells. Neural precursor cells were derived from human ES cells in a stepwise culture condition. Neural precursor cells in the form of neural rosette structures developed into neurospheres when cultured in suspension. Suspension culture of neurospheres has been maintained over 4 months. Expressions of nestin, soxl, sox2, pax3 and pax6 transcripts were upregulated during differentiation into neural precursor cells by RT-PCR analysis. In contrast, expression of oct4 was dramatically downregulated in neural precursor cells. Immunocytochemical analyses of neural precursor cells demonstrated expression of nestin and SOX1. When induced to differentiate on an adhesive substrate, neuro-spheres were able to differentiate into three lineages of neural systems, including neurons, astrocytes and oligo-dendrocytes. Transcripts of sox1 and pax6 were downregulated during differentiation of neural precursor cells into neurons. In contrast, expression of map2ab was elevated in the differentiated cells, relative to those in neural precursor cells. Neurons derived from neural precursor cells expressed NCAM, Tuj1, MAP2ab, NeuN and NF200 in immunocytochemical analyses. Presence of astrocytes was confirmed by expression of GFAP immuno-cytochemically. Oligodendrocytes were also observed by positive immuno-reactivities against oligodendrocyte marker O1. Results of this study demonstrate that a stepwise culture condition is developed for the derivation of neural precursor cells from human ES cells.

In Vitro Neural Cell Differentiation of Genetically Modified Human Embryonic Stem Cells Expressing Tyrosine Hydroxylase

  • Shin, Hyun-Ah;Lee, Keum-Sil;Cho, Hwang-Yun;Kim, Eun-Young;Lee, Won-Don;Park, Sepill;Lim, Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.273-273
    • /
    • 2004
  • This study was to examine in vitro neural cell differentiation pattern of the genetically modified human embryonic stem cells expressing tyrosine hydroxylase (TH). Human embryonic stem (hES, MB03) cell was transfected with cDNAs cording for TH. Successful transfection was confirmed by western immunoblotting. (omitted)

  • PDF

Human Embryonic Stem Cell Transplantation in Parkinson′s Disease (PD) Animal Model: II. In Vivo Transplantation in Normal or PD Rat Brain

  • Choe Gyeong-Hui;Ju Wan-Seok;Kim Yong-Sik;Kim Eun-Yeong;Park Se-Pil;Im Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.19-19
    • /
    • 2002
  • This study was to examine whether the in vitro differentiated neural cells derived from human embryonic stem (hES, MB03) cells can be survived and expressed tyrosin hydroxylase(TH) in grafted normal or PD rat brain. To differentiate in vitro into neural cells, embryoid bodies (EB: for 5 days, without mitogen) were formed from hES cells, neural progenitor cells(neurosphere, for 7-10 days, 20 ng/㎖ of bFGF added N2 medium) were produced from EB, and then finally neurospheres were differentiated into mature neuron cells in N2 medium(without bFGF) for 2 weeks. In normal rat brain, neural progenitor cells or mature neuron cells (1×10/sup 7/ cells/㎖) were grafted to the striatum of normal rats. After 2 weeks, when the survival of grafted hES cells was examined by immunohistochemical analysis, the neural progenitor cell group indicated higher BrdU, NeuN+, MAP2+ and GFAP+ than mature neuron cell group in grafted sites of normal rats. This result demonstrated that the in vivo differentiation of grafted hES cells be increased simultaneously in both of neuronal and glial cell type. Also, neural progenitor cell grafted normal rats expressed more TH pattern than mature neuron cells. Based on this data, as a preliminary test, when the neural progenitor cells were grafted into the striatum of 6-hydroxydopamine lesioned PD rats, we confirmed the cell survival (by double staining of Nissl and NeuN) and TH expression. This result suggested that in vitro differentiated neural progenitor cells derived from hES cells are more usable than mature neuron cells for the neural cell grafting in animal model and those grafted cells were survived and expressed TH in normal or PD rat brain.

  • PDF