DOI QR코드

DOI QR Code

자연정화 기반의 현장 파일럿 실험을 통한 광산배수 구리 정화효율 평가

Evaluation of Cu Removal from Mine Water in Passive Treatment Methods : Field Pilot Experiments

  • 투고 : 2020.05.02
  • 심사 : 2020.06.19
  • 발행 : 2020.06.28

초록

폐광산 지역에서 발생하는 광산배수의 오염원소중 하나인 구리(Cu)는 낮은 농도에서도 독성을 지니고 있어 수계환경에 노출되기 전에 처리되어야 한다. 본 연구에서는 경남 고성군 S광산의 갱내수 정화시설의 Cu 제거효율을 개선하기 위해 석회석과 폐상퇴비를 혼합한 자연정화 기반의 반응조를 이용하여 약 9개월 동안 현장 파일럿실험을 수행하였다. 반응조별 유입수 대비 pH 증가량과 Cu 제거효율은 Successive Alkalinity Producing System (SAPS) > Reducing and Alkalinity Producing System (RAPS) > 석회석반응조 순으로 나타났다. SAPS조와 RAPS조에서는 석회석의 영향과 동시에 유기물의 분해로 인한 알칼리도의 부과로 석회석반응조보다 높은 pH 환경을 조성하였다. pH가 증가할수록 Cu 제거효율이 높아지는 결과를 통해 pH 상승이 Cu를 처리하는 주된 기작임을 확인할 수 있었다. 또한 황산염환원박테리아(Sulfate Reduction Bacteria, SRB)가 SAPS조에서 가장 많이 활성화 된 것을 확인 할 수 있어, 황산염환원반응도 Cu를 제거시키는 기작에 관여함을 판단할 수 있었다. 본 연구는 S광산에서 발생하는 광산배수의 특성에 알맞은 맞춤형 정화공정을 도출하기 위해 현장 그대로의 조건에서 실험을 수행한 것에 의의가 있으며, 향후 정화시설의 개선에 있어 공법 선정에 도움을 줄 수 있을 것이다.

Copper (Cu), one of the main contaminants in the mine drainage from the closed mine area, needs to be removed before exposed to environment because of its toxicity even in the low concentration. In this study, passive treatment based field pilot experiments using limestone and compost media were conducted during 9 months for enhancing Cu removal efficiency of the mine water treatment facility of S mine located in Goseong, Gyeongsangnam-do in South Korea. The pH increase and Cu removal efficiency showed high value at Successive Alkalinity Producing System ( SAPS) > Reducing and Alkalinity Producing System (RAPS) > limestone reactor in a sequence. The compost media using in SAPS and RAPS contributed to raise pH by organic material decomposition with generating alkalinity, thus, Cu removal efficiency increased. Also, experimental results showed that Cu removal efficiency was proportional to pH increase, meaning that pH increase is the main mechanism for Cu removal. Moreover, Sulfate Reduction Bacteria (SRB) was identified to be most activated in SAPS. It is inferred that the sulfate reduction reaction also contributed to Cu removal. This study has the site significance in that the experiments were conducted at the place where the mine water generates. In the future, the results will be useful to select the more effective reactive media used in the treatment facility, which is most appropriate to remediate mine water from the S mine.

키워드

참고문헌

  1. Al-Saydeh, S. A., El-Naas, M. H. and Zaidi, S. J. (2017) Copper removal from industrial wastewater: A comprehensive review. J. Ind. Eng. Chem., v.56, p.35-44. https://doi.org/10.1016/j.jiec.2017.07.026
  2. Aziz, H. A., Adlan, M. N. and Ariffin, K. S. (2008) Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresour. Technol., v.99(6), p.1578-1583. https://doi.org/10.1016/j.biortech.2007.04.007
  3. Brown, M., Barley, B. and Wood, H. (2002) Minewater Tretment Technology. Application and Policy. IWA Publishing, London.
  4. Chen, B. Y., Utgikar, V. P., Harmon, S. M., Tabak, H. H., Bishop, D. F. and Govind, R. (2000) Studies of biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans. Int. Biodeterior Biodegrad., v.46(1), p.11-18. https://doi.org/10.1016/S0964-8305(00)00054-8
  5. Corral-Bobadilla, M., Gonzalez-Marcos, A., Vergara-Gonzalez, E. P. and Alba-Elias, F. (2019) Bioremediation of Waste Water to Remove Heavy Metals Using the Spent Mushroom Substrate of Agaricus bisporus. Water. v.11(3), p.454. https://doi.org/10.3390/w11030454
  6. Gibert, O, Pomierny, S., Rowe, I. and Kalin, R. M. (2008) Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresour. Technol., v.99(16), p.7587-7596. https://doi.org/10.1016/j.biortech.2008.02.012
  7. Hedin, R. S., Watzlaf, G. R. and Narin, R. W. (1994) Passive treatment of acid mine drainage with limestone. J. Environ. Qual., v.23, p.1338-1345. https://doi.org/10.2134/jeq1994.00472425002300060030x
  8. Jage, C. R., Zipper, C. E. and Noble, R. (2001) Factors affecting alkalinity generation by successive alkalinityproducing systems: Regression analysis. J. Environ. Qual., v.30(3), p.1015-1022. https://doi.org/10.2134/jeq2001.3031015x
  9. Lee, C. J., Cheong, J. C., Jhune, C. S., Kim, S. H. and Yu, H. S. (2009) Effect of spent mushroom compost on tomato growth after cultivation of button mushroom, Agaricus bisporus. Korean J. Org. Agric., v.17(1), p.83-94.
  10. Mine Reclamation Corporation (2015) Development of the treatment technology for the various properties of the mine water. Technical Publication 2015-49.
  11. Nassef, E. and El-Taweel, Y. A. (2015) Removal of copper from wastewater by cementation from simulated leach liquors. J. Chem. Eng. Process Technol., v.6(1), 214.
  12. Park, H. S., Kim, D. K., Oh, Y. S., Ji, W. H., Park, M. J., Lee, J. S., Lee, J. U. and Ko, M. S. (2018) Application method of SAPS substrate materials according to mine drainage properties. J. Korean Soc. Miner. Energy Resour. Eng., v.55(5), p.395-404. https://doi.org/10.32390/ksmer.2018.55.5.395
  13. Riefler, R. G., Krohn, J., Stuart, B. and Socotch, C. (2008) Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage. Sci. Total. Environ., v.394, p.222-229. https://doi.org/10.1016/j.scitotenv.2008.01.024
  14. Stumm, W. and Morgan, J. J. (1981) Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters (2nd Edition). John Wiley & Sons Ltd., New York.
  15. Watzlaf, G. R., Schroeder, K. T. and Kairies, C. (2000) Long-term performance of alkalinity-producing passive systems for the treatment of mine drainage. A new era of land reclamation. Proceedings 17th Annual Meeting ASSMR, Tampa, Florida.
  16. Yong, B. Y., Cho, D. W., Jeong, J. W., Lim, G. J., Ji, S. W., Ahn, J. S. and Song, H. (2010) Assessment of adsorption capacity of mushroom compost in AMD treatment systems. Econ. Environ. Geol., v.43(1), p.13-20.
  17. Younger, P. L., Banwart, S. A. and Hedin, R. S. (2002) Water, Hydrology, Pollution, Remediation. Kluwer Academic, The Netherlands