DOI QR코드

DOI QR Code

Erosion and Sedimentation Monitoring of Coastal Region using Time Series UAV Image

시계열 UAV 영상을 활용한 연안지역 침식·퇴적 변화 모니터링

  • CHO, Gi-Sung (Dept. of Civil Engineering, Jeonbuk National University) ;
  • HYUN, Jae-Hyeok (Dept. of Civil Engineering, Jeonbuk National University) ;
  • LEE, Geun-Sang (Dept. of Cadastre & Civil Engineering, Vision College of Jeonju)
  • 조기성 (전북대학교 토목공학과) ;
  • 현재혁 (전북대학교 토목공학과) ;
  • 이근상 (전주비전대학교 지적토목학과)
  • Received : 2020.06.08
  • Accepted : 2020.06.22
  • Published : 2020.06.30

Abstract

In order to promote efficient coastal management, it is important to continuously monitor the characteristics of the terrain, which are changed by various factors. In this study, time series UAV images were taken of Gyeokpo beach. And the standard deviation of ±11cm(X), ±10cm(Y), and ±15cm(Z) was obtained as a result of comparing with the VRS measurement performance for UAV position accuracy evaluation. Therefore, it was confirmed that the tolerance of the digital map work rule was satisfied. In addition, as a result of monitoring the erosion and sedimentation changes using the DSM(digital surface model) constructed through UAV images, an average of 0.01 m deposition occurred between June 2018 and December 2018, and in December 2018 and June 2019. It was analyzed that 0.03m of erosion occurred. Therefore, 0.02m of erosion occurred between June 2018 and June 2019. From the topographical change analysis results, the area of erosion and sediment height was analyzed, and the area of erosion and sedimentation was widely distributed in the ±0.5m section. If we continuously monitor the topographical changes in the coastal regions by using the 3D terrain modeling results using the time series UAV images presented in this study, we can support the coastal management tasks such as supplement or dredging of sand.

효율적인 연안관리 업무를 추진하기 위해서는 다양한 요인에 의해 변화하는 지형의 특성을 지속적으로 모니터링하는 것이 중요하다. 본 연구에서는 격포해수욕장을 대상으로 시계열 UAV 영상을 촬영하였으며, UAV 위치정확도 평가를 위해 VRS 측량성과와 비교한 결과 ±11cm(X), ±10cm(Y), ±15cm(Z)의 표준편차를 얻었으며 따라서 수치지도 작업규정상의 허용오차를 만족하는 것으로 확인되었다. 또한 UAV 영상을 통해 구축한 수치표면모델을 이용하여 침식 및 퇴적 변화 모니터링을 실시한 결과 2018년 6월과 2018년 12월 사이에는 평균 0.01m의 퇴적이 발생하였으며, 2018년 12월과 2019년 6월 사이에는 0.03m의 침식이 발생된 것으로 분석되었다. 따라서 2018년 6월과 2019년 6월 사이에는 전체적으로 0.02m의 침식이 발생된 것을 알 수 있었다. 그리고 시계열로 분석한 지형변화 모니터링 결과로부터 침식 및 퇴적 높이 구간별 면적을 분석한 결과 ±0.5m 구간에서 침식과 퇴적면적이 가장 넓게 분포함을 알 수 있었다. 본 연구에서 제시한 시계열적 UAV 영상을 이용한 3차원 지형 모델링 성과를 활용하여 해안지역의 지형변화를 지속적으로 모니터링 한다면 양빈이나 준설 등과 같은 연안관리 업무를 보다 효과적으로 지원할 수 있을 것이다.

Keywords

References

  1. Artur, W., Przemyslaw, K., Bartosz, M. and Izabela, P. 2019. The use of TLS and UAV methods for measurement of the repose angle of granular materials in terrain conditions. Measurement 146:780-791. https://doi.org/10.1016/j.measurement.2019.07.015
  2. Chiabrando, F., Nex, F., Piatti, D. and Rinaudo, F. 2011. UAV and PRV systems for photogrammetric surveys in archaelogical areas: two tests in the Piedmont region (Italy). Journal of Archaeological Science 38:697-710. https://doi.org/10.1016/j.jas.2010.10.022
  3. Dalamagkidis, K., Valavanis, K.P. and Piegl, L.A. 2008. On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System. Progress in Aerospace Sciences 44(7-8):503-519. https://doi.org/10.1016/j.paerosci.2008.08.001
  4. Emre, A. and Arif, O.A. 2019. Accuracy assessment of a low-cost UAV derived digital elevation model(DEM) in a highly broken and vegetated terrain. Measurement 136:382-386. https://doi.org/10.1016/j.measurement.2018.12.101
  5. Jang, D.H., K.H. Chi and H.Y. Lee. 2002. Classification of tidal flat deposits in the cheongsu-bay using multi-spectral satellite data and measurement data of spectral reflectance. Journal of the Korean Geomorphological Association 9(1):1-14
  6. Kang, D.K. and Seo, J.C. 2012. The morphological changes of the beach and dune using by periodical measurements. Journal of the Korean Geomorphological Association 19(2):69-79
  7. Lee, C.G., Kim, B.W. and Kim, N.Y. 2007. Investigation of shoreline change by photogrammetric method. Journal of the Korean Society for Geospatial Information Science 15(2):15-23
  8. Lee, G.S., Choi, M.K., Yu, W.S. and Jung, K.S. 2019. Creation of river terrain data using region growing method based on point cloud data from UAV photography. Quaternary International 519(10):255-262. https://doi.org/10.1016/j.quaint.2019.04.005
  9. Lee, G.S. and Choi, Y.W. 2015. Landslide hazard evaluation using geospatial information based on UAV and infinite slope stability model. Journal of Cadastre & Land Informatix 45(2):161-173 https://doi.org/10.22640/LXSIRI.2015.45.2.161
  10. Lee, G.S., Choi, Y.W. and Lee, J.J. 2016. Building of 3D terrain modeling and evaluation of location accuracy using UAV in beach area. The Korean Cadastre Information Association 18(2):207-216
  11. Lee, H.S. and Kim, I.H. 2007. Data acquisition using terrestrial laser scanner and RTK-GPS for implementation of beach model. Journal of the Korean Association of Geographic Information Studies 10(2):1-10
  12. National Geographic Information Institute. 2009. Creation work law of digital map (2009-590)
  13. Rhee, S.A., Kim, T.J., Kim, J.I., Kim, M.C. and Chang, H.J. 2015. DSM generation and accuracy analysis from UAV images on river-side facilities. Korean Journal of Remote Sensing 31(2):183-191 https://doi.org/10.7780/kjrs.2015.31.2.12
  14. Shikai, S., Yu, P., Chenglong, H. and Yun, D. 2020. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Transactions 97:415-430. https://doi.org/10.1016/j.isatra.2019.08.018
  15. Shin, D.S. and Seo, J.C. 2011. The short-term morphological changes of the beach and dune using by terrestrial LIDAR. Journal of the Korean Geomorphological Association 18(4):283-296
  16. We, G.J. and Jeong, J.W. 2006. Development of shoreline extraction algorithm using airborne LiDAR data. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 24(2):209-215
  17. Wojciech, G., Wojciech, M. and Pawel, C. 2017. Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS Journal of Photogrammetry and Remote Sensing 126:168-179. https://doi.org/10.1016/j.isprsjprs.2017.02.015
  18. Yu, G.B. 2007. Coastal protection. Hanwul Academy, pp.1-492