DOI QR코드

DOI QR Code

폴리페닐렌설파이드(PPS) 복합소재 제조 및 응용

Fabrication and Applications of Polyphenylene Sulfide (PPS) Composites: A Short Review

  • Choi, Minsik (Carbon Composite Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jungrok (Carbon Composite Materials Research Center, Korea Institute of Science and Technology) ;
  • Ryu, Seongwoo (Department of Advanced Materials Science and Engineering, The University of Suwon) ;
  • Ku, Bon-Cheol (Carbon Composite Materials Research Center, Institute of Advance Composite Materials, Korea Institute of Science and Technology)
  • 투고 : 2020.04.16
  • 심사 : 2020.05.18
  • 발행 : 2020.06.30

초록

폴리페닐렌설파이드(PPS)는 반결정성 엔지니어링 열가소성 수지로 뛰어난 열안정성, 우수한 기계적 강도, 고유의 난연성 및 내화학성, 전기적 특성을 갖고 있다. 이러한 우수한 특성으로 인해 PPS는 복합체의 매트릭스로 선호되고 있다. PPS의 기계적 물성을 향상시키며 기능성 부여를 위해 탄소섬유나 유리섬유와 같은 필러를 이용한 복합화 연구가 진행되어 오고 있다. 본 총설 논문에서는 PPS와 탄소나노튜브, 그래핀, 탄소섬유, 유리섬유 등과의 복합체 제조 및 응용에 대한 연구를 소개하고자 한다.

Polyphenylene sulfide (PPS) is a semi-crystalline engineering thermoplastic resin that has outstanding thermal stability, mechanical strength, inherent flame retardancy, chemical resistance, and electrical properties. Due to these outstanding properties, it is preferred as a matrix for composite materials. Many studies have been conducted to produce composites with carbon fibers and glass fibers to improve mechanical properties and provide functionality of PPS. In this review paper, we report a brief introduction to the fabrication and applications of PPS composites with carbon nanotubes, graphene, carbon fibers, and glass fibers.

키워드

참고문헌

  1. Ashok, S.R., Kailash, R.N., and Sandeep, A.W., "Polyphenylene Sulfide (PPS): State of the Art and Applications", Reviews in Chemical Engineering, Vol. 29, No. 6, 2013, pp. 471-489.
  2. Silvestre, C., Di Pace, E., Napolitano, R., Pirozzi, B., and Cesario, G., "Crystallization, Morphology, and Thermal Behavior of Poly(p-phenylene sulfide)", Journal of Polymer Science: Part B: Polymer Physics, Vol. 39, 2001, pp. 415-424. https://doi.org/10.1002/1099-0488(20010215)39:4<415::AID-POLB1013>3.0.CO;2-Q
  3. Lhymn, C., and Bozolla, J., "Friction and Wear of Fiber Reinforced pps Composites", Polymers for Advanced Technologies, Vol. 7, 1987, pp. 451-461. https://doi.org/10.1002/adv.1987.060070409
  4. Schoch, K.F. Jr., Chance, J.F., and Pfeiffer, K.E., "Sulfur Trioxide-doped Poly(phenylene sulfide)", Macromolecules, Vol. 18, 1985, pp. 2389-2394. https://doi.org/10.1021/ma00154a009
  5. Friedel, C., and Crafts, J.M., "On a New General Method of Synthesis of Aromatic Combinations (second dissertation)", Annales de chimie et de physique, Vol. 14, 1888, pp. 433-472.
  6. Genvresse, M.P., Bulletin de la Societe Chimique de France, Vol. 3, No. 17, 1897, p. 599.
  7. Macallum, A.D., "A Dry Synthesis of Aromatic Sulfides; Phenylene Sulfide Resins", The Journal of Organic Chemistry, Vol. 13, 1948, pp. 154-159. https://doi.org/10.1021/jo01159a020
  8. Edmonds Jr., J.T., and Hill Jr., H.W., U. S. Patent, 3,354,129, 1967.
  9. Tsuchida, E., Yamamoto, K., Nishide, H., Yoshida, S., and Jikei, M., "Polymerization of Diphenyl Disulfide by the S-S Bond Cleavage with a Lewis Acid: A Novel Preparation Route to Poly(p-phenylene sulfide)", Macromolecules, Vol. 23, 1990, pp. 2101-2106. https://doi.org/10.1021/ma00210a001
  10. Tsuchida, E., Yamamoto, K., Nishide, H., and Yoshida, S., "Poly(p-phenylene sulfide)-yielding Polymerization of Diphenyl Disulfide by S-S Bond Cleavage with a Lewis Acid", Macromolecules, Vol. 20, 1987, pp. 2030-2031. https://doi.org/10.1021/ma00174a060
  11. Tsuchida, E., Yamamoto, K., Jikei, M., and Nishide, H., "Oxidative Polymerization of Diphenyl Disulfides with Quinones: Formation of Ultrapure Poly(p-phenylene sulfide)s", Macromolecules, Vol. 23, 1990, pp. 930-934. https://doi.org/10.1021/ma00206a004
  12. Ding, Y., and Hay, A.S., "Novel Synthesis of Poly(p-phenylene sulfide) from Cyclic Disulfide Oligomers", Macromolecules, Vol. 29, 1996, pp. 4811-4812. https://doi.org/10.1021/ma960195o
  13. Zimmerman, D.A., Koenig, J.L., and H. Ishida, "Polymerization of Poly(p-phenylene sulfide) from a Cyclic Precursor", Polymer, Vol. 37, 1996, pp. 3111-3116. https://doi.org/10.1016/0032-3861(96)89412-2
  14. Jikei, M., Hu, Z., Kakimoto, M., and Imai, Y., "Synthesis of Hyperbranched Poly(phenylene sulfide) via a Poly(sulfonium cation) Precursor", Macromolecules, Vol. 29, 1996, pp. 1062-1064. https://doi.org/10.1021/ma951147r
  15. Mellace, A., Hanson, J.E., and Griepenburg, J., "Hyperbranched Poly(phenylene sulfide) and Poly(phenylene sulfone)", Chemistry of Materials, Vol. 17, 2005, pp. 1812-1817. https://doi.org/10.1021/cm048376p
  16. Tsuchida, E., Shouji, E., and Yamamoto, K., "Synthesis of Highmolecular- weight Poly(phenylene sulfide) by Oxidative Polymerization via Poly(sulfonium cation) from Methyl Phenyl Sulfoxide", Macromolecules, Vol. 26, 1993, pp. 7144-7148. https://doi.org/10.1021/ma00078a005
  17. Tsuchida, E., Suzuki, F., Shouji, E., and Yamamoto, K., "Synthesis of Poly(phenylene sulfide) by $O_2$ Oxidative Polymerization of Methyl Phenyl Sulfide", Macromolecules, Vol. 27, 1994, pp. 1057-1060. https://doi.org/10.1021/ma00082a027
  18. Lee, Y.R., Cha, I.H., and Cho, J.S., "Manufacturing Prcess for Poly(arylene sulfide)", KR Patent, 10-1183780, 2012.
  19. Rule, M., David, R.F., Joseph, J.W., and Jerry, S.F., "Copoly (Arylene Sulfidex-disulfide)", US Patent, 4,786,713, 1988.
  20. Rule, M., Donald, W.L., Thomas Jr., H.L., and Gerald, C.T., "Processes for Preparing Iodinated Aromatic Compounds", US Petent, 4,746,758, 1988.
  21. Shin, Y.J., Kim, S.G., Lim, J.B., Cho, J.S., and Cha, I.H., "Process for Preparing Polyarylene Sulfide having Lower Content of Isolated Iodine", KR Patent, 10-1712273, 2017.
  22. Lee, Y.R., Cha, I.H., Shin, Y.J., and Cho, J.S., "Polyarylene Sulfide Resin with Excellent Luminosity and Preparation Method Thereof", US Patent, 8,957,182, 2015.
  23. Gu, J.W., Du, J.J., Dang, J., Geng, W.C., Hu, S.H., and Zhang, Q.Y., "Thermal Conductivities, Mechanical and Thermal Properties of Graphite Nanoplatelets/polyphenylene Sulfide Composites", RSC Advances, Vol. 4, 2014, pp. 22101-22105. https://doi.org/10.1039/C4RA01761G
  24. Kim, J.C., and Kim, Y.H., "Development Status and Use of PPS Fiber", Fiber Technology and Industry, Vol. 11, No. 4, 2007, pp. 271-278.
  25. Seymour, R.B., and Kirshenbaum, G.S. (Ed.), High Performance Polymers: Their Origin and Development, Elsevier Sci. Pub. Co., NY, 1986, pp. 135-148.
  26. Sobia, I., Muhammad, S., Ayesha, K., Sedra, T.M., Jaweria, A., and Iram, B., "A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites", Nature, Vol. 358, 1992, pp. 220-222. https://doi.org/10.1038/358220a0
  27. Michele, T.B., and Yurii, K.G., "Recent Advances in Research on Carbon Nanotube-Polymer Composites", Advanced Materials, Vol. 22, 2010, pp. 1672-1688. https://doi.org/10.1002/adma.200901545
  28. Han, M.S., Lee, Y.K., Lee, H.S., Yun, C.H., and Kim, W.N., Electrical, "Morphological and Rheological Properties of Carbon Nanotube Composites with Polyethylene and Poly(phenylene sulfide) by Melt Mixing", Chemical Engineering Science, Vol. 64, 2009, pp. 4649-4656. https://doi.org/10.1016/j.ces.2009.02.026
  29. Zhang, X.P., Jia, L.C., Zhang, G., Yan, D.X., and Li, Z.M., "A Highly Efficient and Heat-resistant Electromagnetic Interference Shielding Carbon Nanotube-poly(phenylene sulfide) Composite via Sinter Molding", Journal of Materials Chemistry C, Vol. 6, 2018, pp. 10760. https://doi.org/10.1039/C8TC03493A
  30. Lee, J.H., Choi, K.D., Lee, S.H., and Kim, J.S., "PPS Resin Composition and Method for Preparing PPS Fibers", KR Patent, 10-1584849, 2016.
  31. Chae, B.J., Kim, D.H., Jeong, I.S., Hahn, J.R., and Ku, B.C., "Electrical and Thermal Properties of Poly(p-phenylene sulfide) Reduced Graphite Oxide Nanocomposites", Carbon Letters, Vol. 13, No. 4, 2012, pp. 221-225. https://doi.org/10.5714/CL.2012.13.4.221
  32. Zhao, Y.F., Xiao, M., Wang, S.J., Ge, X.C., and Meng, Y.Z., "Preparation and Properties of Electrically Conductive PPS/expanded Graphite Nanocomposites", Composite Science and Technology, Vol. 67, 2007, pp. 2528-2534. https://doi.org/10.1016/j.compscitech.2006.12.009
  33. Park, O.K., Lee, S.H., Ku, B.C., and Lee, J.H., "A Review of Graphene-based Polymer Nanocomposites", Polymer Science and Technology, Vol. 22, No. 5, 2011, pp. 467-473.
  34. Jung, K.H., Kim, H.J., Kim, M.H., and Lee, J.C., "Preparation of Poly(phenylene sulfide)/Nylon 6 Grafted Graphene Oxide Nanocomposites with Enhanced Mechanical and Thermal Properties", Macromolecular Research, Vol. 28, 2020, pp. 241-248. https://doi.org/10.1007/s13233-020-8038-8
  35. Zhang, M., Wang, H., Li, Z., and Cheng, B., "Exfoliated Graphite as a Filler to Improve Poly(phenylene sulfide) Electrical Conductivity and Mechanical Properties", RSC Advances, Vol. 5, 2015, pp. 13840. https://doi.org/10.1039/C4RA13388A
  36. Zhang, K., Zhang, G., Liu, B., Wang, X., Long, S., and Yang, J., "Effect of Aminated Polyphenylene Sulfide on the Mechanical Properties of Short Carbon Fiber Reinforced Polyphenylene Sulfide Composites", Composites Science and Technology, Vol. 98, 2014, pp. 57-63. https://doi.org/10.1016/j.compscitech.2014.04.020
  37. Durmaz, B.U., and Aytac, A., "Characterization of Carbon Fiber-reinforced Poly(phenylene sulfide) Composites Prepared with Various Compatibilizers", Journal of Composite Materials, Vol. 54, No. 1, 2020, pp. 89-100. https://doi.org/10.1177/0021998319859063
  38. Ren, H.H., Xu, D.X., Yan, G.M., Zhang, G., Wang, X.J., Long, S.R., and Yang, J., "Effect of Carboxylic Polyphenylene Sulfide on the Micromechanical Properties of Polyphenylene Sulfide/carbon Fiber Composites", Composites Science and Technology, Vol. 146, 2017, pp. 65-72. https://doi.org/10.1016/j.compscitech.2017.03.021
  39. Park, M., Park, J.H., Yang, B.J., Cho, J.H., Kim, S.Y., and Jung, I.H., "Enhanced Interfacial, Electrical, and Flexural Properties of Polyphenylene Sulfide Composites Filled with Carbon Fibers Modified by Electrophoretic Surface Deposition of Multiwalled Carbon Nanotubes", Composites Part A, Vol. 109, 2018, pp. 124-130. https://doi.org/10.1016/j.compositesa.2018.03.005
  40. Zuo, P., Benevides, R.C., Laribi, M.A., Fitoussi, J., Shirinbayan, M., Bakir, F., and Tcharkhtchi, A., "Multi-scale Analysis of the Effect of Loading Conditions on Monotonic and Fatigue Behavior of a Glass Fiber Reinforced Polyphenylene Sulfide (PPS) Composite", Composites Part B, Vol. 145, 2018, pp. 173-181. https://doi.org/10.1016/j.compositesb.2018.03.031
  41. Zhao, L., Yu, Y., Huang, H., Yin, X., Peng, J., Sun, J., Huang, L., Tang, Y., and Wang, L., "High-performance Polyphenylene Sulfide Composites with Ultra-high Content of Glass Fiber Fabrics", Composites Part B, Vol. 174, 2019, pp. 106790 https://doi.org/10.1016/j.compositesb.2019.05.001
  42. Ren, H.H., Xu, D.X., Yu, T., Yang, J.C., Zhang, G., Wang, X.J., and Yang, J., "Effect of Polyphenylene Sulfide Containing Amino Unit on Thermal and Mechanical Properties of Polyphenylene Sulfide/glass Fiber Composites", Journal of Applied Polymer Science, Vol. 135, No. 6, 2018, pp. 45804. https://doi.org/10.1002/app.45804
  43. Borzacchiello, A., Autiello, M.S., Russo, L., and Nicolais, L., Wiley Encyclopedia of Composites, John Wiley & Sons, Inc., 2012.
  44. Haddadi-Asl, V., Kazacos, M., and Skyllas-Kazacos, M., "Carbon-polymer Composite Electrodes for Redox Cells", Journal of Applied Polymer Science, Vol. 57, 1995, pp. 1455-1463. https://doi.org/10.1002/app.1995.070571205
  45. Hassan, N.U., Tunaboylu, B., and Soydan, A.M., "A Competitive Design and Material Consideration for Fabrication of Polymer Electrolyte Membrane Fuel Cell Bipolar Plates", Designs, Vol. 3, No. 1, 2019, pp. 13. https://doi.org/10.3390/designs3010013
  46. Song, L.N., Xiao, M., and Meng, Y.Z., "Electrically Conductive Nanocomposites of Aromatic Polydisulfide/expanded Graphite", Composites Science and Technology, Vol. 66, 2006, pp. 2156-2162. https://doi.org/10.1016/j.compscitech.2005.12.013
  47. Dhakate, S.R., Sharma, S., Borah, M., Mathur, R.B., and Dhami, T.L., "Development and Characterization of Expanded Graphite-based Nanocomposite as Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells (PEMFCs)", Energy & Fuels, Vol. 22, 2008, pp. 3329-3334. https://doi.org/10.1021/ef800135f
  48. Lee, J.H., Jang, Y.K., Hong, C.E., Kim, N.H., Li, P., and Lee, H.K., "Effect of Carbon Fillers on Properties of Polymer Composite Bipolar Plates of Fuel Cells", Journal of Power Sources, Vol. 193, 2009, pp. 523-529. https://doi.org/10.1016/j.jpowsour.2009.04.029
  49. Chunhui, S., Mu, P., and Runzhang, Y., "The Effect of Particle Size Gradation of Conductive Fillers on the Conductivity and the Flexural Strength of Composite Bipolar Plate", International Journal of Hydrogen Energy, Vol. 33, 2008, pp. 1035-1039. https://doi.org/10.1016/j.ijhydene.2007.11.013
  50. Caglar, B., Fischer, P., Kauranen, P., Karttunen, M., and Elsner, P., "Development of Carbon Nanotube and Graphite Filled Polyphenylene Sulfide Based Bipolar Plates for All-vanadium Redox Flow Batteries", Journal of Power Sources, Vol. 256, 2014, pp. 88-95. https://doi.org/10.1016/j.jpowsour.2014.01.060
  51. Kim, N.H., Kuila, T., Kim, K.M., Nah, S.H., and Lee, J.H., "Material Selection Windows for Hybrid Carbons/poly(phenylene sulfide) Composite for Bipolar Plates of Fuel Cell", Polymer Testing, Vol. 31, No. 4, 2012, pp. 537-545. https://doi.org/10.1016/j.polymertesting.2012.02.006
  52. Park, H.J., Woo, J.S., and Park, S.Y., "Poly(phenylene sulfide)-graphite Composites for Bipolar Plates with Preferred Morphological Orientation", The Korean Journal of Chemical Engineering, Vol. 36, No. 12, 2019, pp. 2133-2142. https://doi.org/10.1007/s11814-019-0397-5
  53. Muzzy, J.D., and Kays, A.O., "Thermoplastic vs Thermosetting Structural Composites", Polymer Composites, Vol. 5, No. 3, 1984, pp. 169-72. https://doi.org/10.1002/pc.750050302
  54. Sorathia, U., Beck, C., and Dapp, T., "Residual Strength of Composites during and after Fire Exposure", Journal of Fire Sciences, Vol. 11, 1993, pp. 255-270. https://doi.org/10.1177/073490419301100305
  55. Benoit, V., Cédric, L., and Alexis, C., "Post Fire Behavior of Carbon Fibers Polyphenylene Sulfide- and Epoxy-based Laminates for Aeronautical Applications: A Comparative Study", Materials and design, Vol. 63, 2014, pp. 56-68. https://doi.org/10.1016/j.matdes.2014.05.046
  56. Lim, J.C., Park, Y.W., and Kim, H.C., "Study on Manufacturing PCT/PPS Flame Retardant Fiber by Sheath/Core Conjugate Spinning", Fibers and Polymers, Vol. 21, No. 3, 2020, pp. 498-504. https://doi.org/10.1007/s12221-020-9082-x
  57. Park, S.Y., Kim, H.M., Kim, S.Y., and Youn, J.R., "Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites with Mixed Boron Nitride and Multi-walled Carbon Nanotube Fillers", Carbon, Vol. 50, 2012, pp. 4830-4838. https://doi.org/10.1016/j.carbon.2012.06.009
  58. Pernot, G., Stoffel, M., Savic, I., Pezzoli, F., Chen, P., Savelli, G., Jacquot, A., Schumann, J., Denker, U., Mönch, I., Deneke, Ch., Schmidt, O.G., Rampnoux, J.M., Wang, S., Plissonnier, M., Rastelli, A., Dilhaire, S., and Mingo, N., "Precise Control of Thermal Conductivity at the Nanoscale through Individual Phonon-scattering Barriers", Nature Materials, Vol. 9, 2010, pp. 491-495. https://doi.org/10.1038/nmat2752
  59. Shaikh, S., Lafdi, K., and Silverman, E., "The Effect of a CNT Interface on the Thermal Resistance of Contacting Surfaces", Carbon, Vol. 45, No. 4, 2007, pp. 695-703. https://doi.org/10.1016/j.carbon.2006.12.007
  60. Gu, J., Guo, Y., Yang, X., Liang, C., Geng, W., Tang, L., Li, N., and Zhang, Q., "Synergistic Improvement of Thermal Conductivities of Polyphenylene Sulfide Composites Filled with Boron Nitride Hybrid Fillers", Composites: Part A, Vol. 95, 2017, pp. 267-273. https://doi.org/10.1016/j.compositesa.2017.01.019