DOI QR코드

DOI QR Code

Comparative evaluation to select optimal adjuvant of novel type Salmonella Typhimurium inactivated bacteria for protecting Salmonella infections in a murine model

마우스에서 살모넬라 감염증 예방을 위한 신개념 Salmonella Typhimurium 불활화 사균체에 최적 adjuvant 선택을 위한 효능 비교 시험

  • Moon, Ja-Young (College of Veterinary Medicine, Jeonbuk National University) ;
  • Ochirkhuyag, Enkhsaikhan (College of Veterinary Medicine, Jeonbuk National University) ;
  • Kim, Won-Kyong (College of Veterinary Medicine, Jeonbuk National University) ;
  • Lee, Jun-Woo (College of Veterinary Medicine, Jeonbuk National University) ;
  • Jo, Young-Gyu (College of Veterinary Medicine, Jeonbuk National University) ;
  • Kwak, Kil Han (Animal Health Institute of Jeollabukdo) ;
  • Park, Byung Yong (College of Veterinary Medicine, Jeonbuk National University) ;
  • Hur, Jin (College of Veterinary Medicine, Jeonbuk National University)
  • Received : 2020.06.15
  • Accepted : 2020.06.23
  • Published : 2020.06.30

Abstract

This study was carried out to examine a novel inactivated Salmonella Typhimurium (S. Typhimurium) vaccine candidate for protection of mice against salmonellosis by immunization of BALB/c mice using various type adjuvant. The novel type-inactivated vaccine candidate was constructed by adding Chlorhexidine digluconate solution. BALB/c mice were divided into 6 groups of 15 mice apiece. The mice were intramuscularly (IM) primed at 6 weeks of age and were IM boosted 8 weeks of age. Groups A and B mice were injected with sterile phosphate-buffered saline as controls; group C mice were inoculated with 5×108 cells/100 µL of formalin-inactivated S. Typhimurium cells and adjuvant ISA70; groups D~F mice were immunized with 5×108 cells/100 µL of the inactivated vaccine candidate and adjuvant ISA70, adjuvant IMS1313 and adjuvant IMS1313 containing 30 ㎍/mL of GI24, respectively. All mice (except group A mice) were orally challenged with a virulent S. Typhimurium strain at 10 weeks of age. Mice from groups C-F had significantly increased IgG levels compared to control groups (A-B) mice. The levels of splenocyte IFN-γ and IL-4 in mice of all groups were measured by ELISA, resulting in increased immunity in group F mice compared to those of groups A-E mice. These data suggested that systemic and cell-mediated immune responses were highly induced by IM immunization with the vaccine candidate and adjuvant IMS1313 containing GI24. Furthermore, clinical signs such as death were observed in only 20% of group F mice after virulent Salmonella strain challenge, however, groups B and C (100%), and groups D and E (60%) mice died. This data suggested that mice immunized by intramuscular prime and booster with this vaccine candidate and adjuvant IMS1313 containing GI24 effectively protected mice from salmonellosis.

Keywords

References

  1. 문자영, 곽길환, Enkhsaikhan Ochirkhuyag, 김선민, 이준우, 조영규, 김원경, 방우영, 배창환, 허 진. 2019. 가금티푸스 예방을 위한 adjuvant로서 mastoparan V1을 사용한 포르말린-불활화 Salmonella Gallinarum 사균체 백신의 효능 평가. 한국가축위생학회지 42(4): 257-264. https://doi.org/10.7853/kjvs.2019.42.4.257
  2. Abd El Ghany M, Jansen A, Clare S, Hall L, Pickard D, Kingsley RA, Dougan G. 2007. Candidate live, attenuated Salmonella enterica serotype Typhimurium vaccines with reduced fecal shedding are immunogenic and effective oral vaccines. Infect Immun 75: 1835-42. https://doi.org/10.1128/IAI.01655-06
  3. Alvarez J, Sota M, Vivanco AB, Perales I, Cisterna R, Rementeria A, Garaizar J. 2004. Development of a Multiplex PCR Technique for Detection and Epidemiological Typing of Salmonella in Human Clinical Samples. J Clin Microbiol 42: 1734-8 https://doi.org/10.1128/JCM.42.4.1734-1738.2004
  4. Barbezange C, Ermel G, Ragimbeau C, Humbert F, Salvat G. 2000. Some safety aspects of Salmonella vaccines for poultry: in vivo study of the genetic stability of three Salmonella typhimurium live vaccines. FEMS Microbiol Lett 192: 101-6. https://doi.org/10.1111/j.1574-6968.2000.tb09366.x
  5. Berndt A, Methner U. 2001. Gamma/delta T cell response of chickens after oral administration of attenuated and non-attenuated Salmonella typhimurium strains. Vet Immunol Immunopathol 78: 143-61. https://doi.org/10.1016/S0165-2427(00)00264-6
  6. Brumme S, Arnold T, Sigmarsson H, Lehmann J, Scholz HC, Hardt WD, Hensel A, Truyen U, Roesler U. 2007. Impact of Salmonella Typhimurium DT104 virulence factors invC and sseD on the onset, clinical course, colonization patterns and immune response of porcine salmonellosis. Vet Microbiol 124: 274-85. https://doi.org/10.1016/j.vetmic.2007.04.032
  7. Cheung HY, Wong MNK, Cheung SH, Liang LY, Lam LY, Chiu SK. 2012. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli. PLoS One 7(5): e36659. https://doi.org/10.1371/journal.pone.0036659
  8. Desin TS, Koster W, Potter AA. 2013. Salmonella vaccines in poultry: past, present, and future. Expert Rev Vaccines 12: 87-96. https://doi.org/10.1586/erv.12.138
  9. Diamond G, Beckloff N, Weinberg A, Kisich KO. 2009. The role of antimicrobial peptides in innate host defense. Curr Pharm Des 15: 2377-2392. https://doi.org/10.2174/138161209788682325
  10. Dupuis L, Ascarateil S, Aucouturier J, Ganne V. 2006. SEPPIC vaccine adjuvants for poultry. Ann NY Acad Sci 1081: 202-205. https://doi.org/10.1196/annals.1373.024
  11. Fabrega A, Vila J. 2013. Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26: 308-41. https://doi.org/10.1128/CMR.00066-12
  12. Feng P, Wilson QM, Meissler Jr JJ, Adler MW, Eisenstein TK. 2005. Increased sensitivity to Salmonella enterica serovar Typhimurium infection in mice undergoing withdrawal from morphine is associated with suppression of interleukin-12. Infect Immun 73: 7953-9. https://doi.org/10.1128/IAI.73.12.7953-7959.2005
  13. Gazit E, Boman A, Boman HG, Shai Y. 1995. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry. 34:11479-11488. https://doi.org/10.1021/bi00036a021
  14. Hajam IA, Dar PA, Won G, Lee JH. 2017 Bacterial ghosts as adjuvants: Mechanisms and potential. Vet Res 48: 37. https://doi.org/10.1186/s13567-017-0442-5
  15. Hensel A , Huter V, Katinger A, Raza P, Strnistschie C, Roesler U, Brand E, Lubitz W. 2000. Intramuscular immunization with genetically inactivated (ghosts) Actinobacillus pleuropneumoniae serotype 9 protects pigs against homologous aerosol challenge and prevents carrier state. Vaccine 18: 2945-2955. https://doi.org/10.1016/S0264-410X(00)00107-9
  16. Henzler-Wildman KA, Martinez GV, Brown MF, Ramamoorthy A. 2004 Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Biochemistry 43: 8459-8469. https://doi.org/10.1021/bi036284s
  17. Hur J, Kim MY, Lee JH. 2011. Evaluation of efficacy of a new live Salmonella Typhimurium vaccine candidate in a murine model. Comp Immunol Microbiol Infect Dis 34: 171-177. https://doi.org/10.1016/j.cimid.2010.11.001
  18. Hur J, Lee JH. 2010. Immunization of pregnant sows with a novel virulence gene deleted live Salmonella vaccine and protection of their suckling piglets against salmonellosis. Vet Microbiol 143: 270-6. https://doi.org/10.1016/j.vetmic.2009.11.034
  19. Hur J, Lee JH. 2011. Enhancement of immune responses by an attenuated Salmonella enterica serovar Typhimurium strain secreting an Escherichia coli heat-labile enterotoxin B subunit protein as an adjuvant for a live Salmonella vaccine candidate. Clin Vaccine Immunol 18: 203-9. https://doi.org/10.1128/CVI.00407-10
  20. Ismail NM, El-Deeb AH, Emara MM, Tawfik HI, Wanis NA, Hussein HA. 2018. IMS 1313-nanoparticle mucosal vaccine enhances immunity against avian influenza and Newcastle disease viruses. Int J Poult Sci 17: 167-174. https://doi.org/10.3923/ijps.2018.167.174
  21. Jang SI, Lillehoj HS, Lee SH, Lee KW, Lillehoj EP, Bertrand F, Dupuis L, Deville S. 2011. Mucosal immunity against Eimeria acervulina infection in broiler chickens following oral immunization with profilin in $Montanide^{TM}$ adjuvants. Exp Parasitol 129: 36-41. https://doi.org/10.1016/j.exppara.2011.05.021
  22. Kim SJ, Kim JH, Jun SY, Paik HR, Han JH. 2014. Protective effect of bacteriophages against Salmonella Typhimurium infection in weaned piglets. Korean J Vet Serv 37: 35-43. https://doi.org/10.7853/kjvs.2014.37.1.35
  23. Kim WK, Moon JY, Cho JS, Ochirkhuyag E, Akanda MR, Park BY, Hur J. 2019. Protective efficacy of an inactivated Brucella abortus vaccine candidate lysed by GI24 against brucellosis in Korean black goats. Can J Vet Res 83: 68-74.
  24. King TP, Jim SY, Wittkowski KM. 2003. Inflammatory role of two venom components of yellow jackets (Vespula vulgaris): A mast cell degranulating peptide mastoparan and phospholipase A1. Int Arch Allergy Immunol 131: 25-32. https://doi.org/10.1159/000070431
  25. Kwon AJ, Moon JY, Kim WK, Kim S, Hur J. 2016. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models. J Vet Med Sci 78: 1541-1548. https://doi.org/10.1292/jvms.16-0036
  26. Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubit W. 2010. The Bacterial ghost platform system: Production and applications. Bioeng Bugs 1: 326-336. https://doi.org/10.4161/bbug.1.5.12540
  27. Liu J, Li Y, Sun Y, Ji X, Zhu L, Guo X, Zhou W, Zhou B, Liu S , Zhang R, Feng S. 2010. Immune responses and protection induced by Brucella suis S2 bacterial ghosts in mice. Vet Immunol Immunopathol 166: 138-144. https://doi.org/10.1016/j.vetimm.2015.04.008
  28. Lv Y, Wang J, Gao H, Wang Z, Dong N, Ma Q, Shan A. 2014. Antimicrobial properties and membrane-active mechanism of a potential ${\alpha}$-helical antimicrobial derived from cathelicidin PMAP-36. PLoS One 9: e86364. https://doi.org/10.1371/journal.pone.0086364
  29. Mastroeni P, Chabalgoity JA, Dunstan SJ, Maskell DJ, Dougan G. 2001. Salmonella: immune responses and vaccines. Vet J 161: 132-64. https://doi.org/10.1053/tvjl.2000.0502
  30. Medina FA, de Almeida CJ, Dew E, Li J, Bonuccelli G, Williams TM, Cohen AW, Pestell RG, Frank PG, Tanowitz HB, Lisanti MP. 2006. Caveolin-1-deficient mice show defects in innate immunity and inflammatory immune response during Salmonella enterica serovar Typhimurium infection. Infect Immun 74: 6665-74. https://doi.org/10.1128/IAI.00949-06
  31. Mittrucker HW, Raupach B, Kohler A, Kaufmann SH. 2000. Cutting edge: role of B lymphocytes in protective immunity against Salmonella typhimurium infection. J Immunol 164: 1648-52. https://doi.org/10.4049/jimmunol.164.4.1648
  32. Nagarajan AG, Balasundaram SV, Janice J, Karnam G, Eswarappa SM, Chakravortty D. 2009. sopB of Salmonella enterica serovar Typhimurium is apotential DNA vaccine candidate in conjugation with live attenuated bacteria. Vaccine 27: 2804-11. https://doi.org/10.1016/j.vaccine.2009.02.092
  33. Norimatsu M, Chance V, Dougan G, Howard CJ, Villarreal-Ramos B. 2004. Live Salmonella enterica serovar Typhimurium (S. Typhimurium) elicit dendritic cell responses that differ from those induced by killed S. Typhimurium. Vet Immunol Immunopathol 98: 193-201. https://doi.org/10.1016/j.vetimm.2003.12.008
  34. Pascual DW, Trunkle T, Sura J. 2002. Fimbriated Salmonella enterica serovar Typhimurium abates initial inflammatory responses by macrophages. Infect Immun 70: 4273-81. https://doi.org/10.1128/IAI.70.8.4273-4281.2002
  35. Pathangey L ,Kohler JJ, Isoda R, Brown TA. 2009. Effect of expression level on immune responses to recombinant oral Salmonella enterica serovar Typhimurium vaccines. Vaccine 27: 2707-11. https://doi.org/10.1016/j.vaccine.2009.02.072
  36. Roesler U, Heller P, Waldmann KH, Truyen U, Hensel A. 2006. Immunization of sows in an integrated pig-breeding herd using a homologous inactivated Salmonella vaccine decreases the prevalence of Salmonella Typhimurium infection in the offspring. J Vet Med B Infect Dis Vet Public Health 53: 224-8. https://doi.org/10.1111/j.1439-0450.2006.00951.x
  37. Schwartz KJ, Taylor DJ, Straw BE, D'Allaire S, Mengeling WL. 1999. Diseases of swine. Iowa state University. press. Ames, Iowa 535-551.
  38. Won G, Chaudhari AA, Lee JH. 2016. Protective efficacy and immune responses by homologous prime-booster immunizations of a novel inactivated Salmonella Gallinarum vaccine candidate. Clin Exp Vaccine Res 5: 148-158. https://doi.org/10.7774/cevr.2016.5.2.148
  39. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81: 1475-1485. https://doi.org/10.1016/S0006-3495(01)75802-X