DOI QR코드

DOI QR Code

CTX-M β-lactamase and plasmid-mediated quinolone resistance genes in cefotaxime-resistant gram-negative bacteria isolated from companion animals

반려동물에서 분리된 cefotaxime 내성 그람 음성균에서 CTX-M β-lactamase와 plasmid 매개 퀴놀론 내성 유전자

  • Cho, Jae-Keun (Health & Environmental Research Institute of Daegu) ;
  • Lee, Jung-Woo (Health & Environmental Research Institute of Daegu) ;
  • Kim, Jeong-Mi (Health & Environmental Research Institute of Daegu) ;
  • Park, Dae-Hyun (Health & Environmental Research Institute of Daegu) ;
  • Jeong, Ji-yeon (Avian Disease Research Division, Animal and Plant Quarantine Agency)
  • 조재근 (대구광역시보건환경연구원) ;
  • 이정우 (대구광역시보건환경연구원) ;
  • 김정미 (대구광역시보건환경연구원) ;
  • 박대현 (대구광역시보건환경연구원) ;
  • 정지연 (농림축산검역본부 조류질병과)
  • Received : 2020.06.09
  • Accepted : 2020.06.15
  • Published : 2020.06.30

Abstract

The aim of this study was to investigate the prevalence of CTX-M β-lactamase and plasmid-mediated quinolone resistance (PMQR) genes, and the pattern of antibiotic resistance in cefotaxime-resistant gramnegative bacteria. A total 126 gram-negative bacteria were isolated from hospitalized dogs and cats between 2018 and 2019. The most predominant isolates were E. coli (n=41), followed by Pseudomonas aeruginosa (n=25), Proteus mirabilis (n=14), Klebsiella pneumoniae (n=9), Sphingomonas paucimobilis (n=7), and Enterobacter cloacae and Serratia marcescens (respectively, n=5). Cefotaxime-resistant isolates were identified in 26.2% (33 isolates) of 126 gram-negative bacteria. CTX-M type β-lactamase were found in 15 isolates (10 E. coli, 1 Ent, cloacae and 4 K. pneumoniae, respectively). Among the CTX-M producing gram-negative bacteria, CTX-M-1 and CTX-M-9 were detected in 10 (66.7%) and 5 (33.3%) isolates, respectively. While, CTX-M-2 and CTX-M-8 were not found. PMQR genes were detected in 12 (36.4%) isolates (4 E. coli, 2 Ent, cloacae and 6 K. pneumoniae, respectively), and the predominant PMQR gene was aac(6')-lb-cr (n=9), followed by qnrB (n=8) and qnrS (n=1) alone or in combination. qnrA and qepA were not found. Additionally, 9 (60%) of 12 PMQR positive isolates were co-existence with CTX-M-1 or CTX-M-9. CTX-M or PMQR producing isolates showed highly resistance to penicillins (100%), cephalosporins (100~66.7%), monobactams (72.2%), and non-β-lactam antibiotics (94.4~61.1%) such as quinolones, trimethoprim/sulfamethoxazole, tetracycline and gentamicin. These findings showed CTX-M-1, CTX-M-9, aac(6')-lb-cr and qnrB were highly prevalent in cefotaxime-resistant Enterobacteriaceae isolates from companion animals in our region. Moreover, PMQR genes were closely associated with CTX-M type β-lactamase.

Keywords

References

  1. Aslantas O, Yilmaz ES. 2017. Prevalence and molecular characterization of extended-spectrum ${\beta}$-lactamase (ESBL) and plasmidic AmpC ${\beta}$-lactamase (pAmpC) producing Escherichia coli in dogs. J Vet Med Sci 79: 1024-1030. https://doi.org/10.1292/jvms.16-0432
  2. Awosile BB, McClure JT, Saab ME, Heider LC. 2018. Antimicrobial resistance in bacteria isolated from cats and dogs from the Atlantic provinces, Canada From 1994-2013. Can Vet J 59: 885-893.
  3. Bonnet R. 2004. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48: 1-14. https://doi.org/10.1128/AAC.48.1.1-14.2004
  4. Briales A, Rodriguez-Martinez JM, Velasco C, de Alba PD, Rodriguez-Bano J, Martinez-Martinez L, Pascual A. 2012. Prevalence of plasmid-mediated quinolone resistance determinants qnr and aac(6')-Ib-cr in Escherichia coli and Klebsiella pneumoniae producing extended-spectrum ${\beta}$-lactamases in Spain. Int J Antimicrob Agents 39: 431-434. https://doi.org/10.1016/j.ijantimicag.2011.12.009
  5. Carattoli A, Lovari S, Franco A, Cordaro G, Di Matteo P, Battisti A. 2005. Extended-spectrum beta-lactamases in Escherichia coli isolated from dogs and cats in Rome, Italy, from 2001 to 2003. Antimicrob Agents Chemother 49: 833-835. https://doi.org/10.1128/AAC.49.2.833-835.2005
  6. Cho JK, Kim JH, Kim JM, Park CK, Kim KS. 2013. Antimicrobial reisstance and distribution of resistance gene in Enterobacteriaceae and Pseudomonas aeruginosa isolated from dogs and cats. Korean J Vet Res 36: 171-180.
  7. Cho JK, Kim JM, Kim HD, Kim KH. 2017. Antimicrobial-resistant Escherichia coli isolated from dogs and cats at animal hospitals in Daegu. Korean J Vet Res 40: 193-200.
  8. Cho JK, Kim JM, Kim HD, Kim KH, Lim HS, Yang CR. 2019. Characterization of plasmid- mediated quinolone resistance genes in Enterobacteriaceae isolated from companion animals. Korean J Vet Res 42: 17-24.
  9. Choi SH, Lee JE, Park SJ, Kim MN, Choo EJ, Kwak, YG, Jeong JY, Woo JH, Kim NJ, Kim YS. 2007. Prevalence, microbiology, and clinical characteristics of extended-spectrum ${\beta}$-lactamase producing Enterobacter spp., Serratia marcescens, Citrobacter freundii and Morganella morganii in Korea. Eur J Clin Microbiol Infect Dis 26: 557-561. https://doi.org/10.1007/s10096-007-0308-2
  10. CLSI. Clinical and Laboratory Standards Institute. 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacterial isolated from animals; approved standard. fourth edition and supplement, CLSI document VET01-A4 (standard) and VET01-S2 (supplement), in Clinical and Laboratory Standards Institute (Wayne, PA).
  11. Donati V, Feltrin F, Hendriksen RS, vendsen CA, Cordaro G, Garcia-Fernandez A, Lorenzetti S, Lorenzetti R, Battisti A, Franco A. 2014. Extended-spectrum beta-lactamases, AmpC beta- lactamases and plasmid mediated quinolone resistance in Klebsiella spp. from companion animals in Italy. PLoS One 9: e90564. https://doi.org/10.1371/journal.pone.0090564
  12. Harada K, Shimizu T, Mukai Y, Kuwajima K, Sato T, Kajino A, Usui M, Tamura Y, Kimura Y, Miyamoto T, Tsuyuki Y, Ohki A, Kataoka Y. 2016. Phenotypic and Molecular Characterization of Antimicrobial Resistance in Klebsiella spp. isolates from companion animals in Japan: Clonal dissemination of multidrug-resistant extended-spectrum ${\beta}$-lactamase-producing Klebsiella pneumoniae. Front Microbiol 7: 1021.
  13. Harada K, Shimizu T, Mukai Y, Kuwajima K, Sato T, Kajino A, Usui M, Tamura Y, Kimura Y, Miyamoto T, Tsuyuki Y, Ohki A, Kataoka Y. 2017. Phenotypic and molecular characterization of antimicrobial resistance in Enterobacter spp. isolates from companion animals in Japan. PLoS One 12: e0174178. https://doi.org/10.1371/journal.pone.0174178
  14. Hong JS, Song W, Park HM, Oh JY, Chae JC, Shin S, Jeong SH. 2019. Clonal Spread of Extended- spectrum cephalosporin-resistant Enterobacteriaceae between companion animals and humans in South Korea. Front Microbiol 10: 1371. https://doi.org/10.3389/fmicb.2019.01371
  15. Jacoby GA. 2005. Mechanisms of resistance to quinolones. Clin Infect Dis 41: S120-126. https://doi.org/10.1086/428052
  16. Jacoby GA and Medeios AA. 1991. More extended-spectrum ${\beta}$-lactamases. Antimicrob Agents Chemother 35: 1697-1704. https://doi.org/10.1128/AAC.35.9.1697
  17. Jeong HS, Bae IK, Shin JH, Jung HJ, Kim SH, Lee JY, Oh SH, Kim HR, Chang CL, Kho WG, Lee JN. 2011. Prevalence of plasmid-mediated quinolone resistance and its association with extended-spectrum beta-lactamase and AmpC beta-lactamase in Enterobacteriaceae Korean J Lab Med 31: 257-264. https://doi.org/10.3343/kjlm.2011.31.4.257
  18. Kim DK, Shin DH, Kim HY, Byun JW, Lee KH, Lee OS, Jung BY. 2011. Antimicrobial suscep- tibility of gram-negative bacteria from dogs and cats. J Vet Clin 28: 348-351.
  19. Koenig A. 2012. Gram-negative bacterial infection. In: Greene CE, editor. Infectious Diseases of the Dog and Cat. p.349-359. St Louis: Elsevier Saunders.
  20. Liao CH, Hsueh PR, Jacoby GA, Hooper DC. 2013. Risk factors and clinical characteristics of patients with qnr-positive Klebsiella pneumoniae bacteraemia. J Antimicrob Chemother 68: 2907-2914. https://doi.org/10.1093/jac/dkt295
  21. Lim SK, Lee HS, Nam HM, Jung SC, Bae YC. 2009. CTXM-type beta-lactamase in Escherichia coli isolated from sick animals in Korea. Microb Drug Resist 15: 139-142. https://doi.org/10.1089/mdr.2009.0901
  22. Liu X, Liu H, Li Y, Hao C. 2016a. High prevalence of ${\beta}$-lactamase and plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China. Front Microbiol 16: 1843.
  23. Liu X, Thungrat K, Boothe DM. 2016b. Occurrence of OXA-48 carbapenemase and other ${\beta}$-lactamase genes in ESBLproducing multidrug resistant Escherichia coli from dogs and cats in the United States, 2009-2013. Front Microbiol 7: 1057.
  24. Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala J, Coque TM, Kern-Zdanowicz I, Luzzaro F, Poirel L, Woodford N. 2007. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59: 165-174. https://doi.org/10.1093/jac/dkl483
  25. Ma J, Zeng Z, Chen Z, Xu X, Wang X, Deng Y, Lu D, Huang L, Zhang Y, Liu J, Wang M. 2009. High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6')-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food- producing animals. Antimicrob Agents Chemother 53: 519-524. https://doi.org/10.1128/AAC.00886-08
  26. Martinez-Martinez, Pascual LA, Jacoby GA. 1998. Quinolone resistance from a transferable plasmid. Lancet. 351: 797-799. https://doi.org/10.1016/S0140-6736(97)07322-4
  27. O'Keefe A, Hutton TA, Schifferli DM, Rankin SC. 2010. First detection of CTX-M and SHV extended-spectrum beta-lactamases in Escherichia coli urinary tract isolates from dogs and cats in the United States. Antimicrob Agents Chemother 54: 3489-3492. https://doi.org/10.1128/AAC.01701-09
  28. Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. 2001. Identification of CTX-M-14 extended-spectrum ${\beta}$-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, Klebsiella pneumoniae in Korea. J Clin Microbiol 39: 3747-3749. https://doi.org/10.1128/JCM.39.10.3747-3749.2001
  29. Park SW, Seo KW, Hwang CY, Youn HW, Han HY. 2004. Isolation of bacteria from clinial specimens in veterinary medical teaching hospital and trend of antimicrobial susceptibility. J Vet Clin 21: 7-14.
  30. Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, Bonomo RA; International Klebsiella Study Group. 2003. Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob Agents Chemother 47: 3554-3360. https://doi.org/10.1128/AAC.47.11.3554-3560.2003
  31. Poirel L, Cattoir V, Nordmann P. 2012. Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front Microbiol 3: 24. https://doi.org/10.3389/fmicb.2012.00024
  32. Poirel L, Kampfer P, Nordmann P. 2002. Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extendedspectrum beta-lactamases. Antimicrob Agents Chemother 46: 4038-4040. https://doi.org/10.1128/AAC.46.12.4038-4040.2002
  33. Rodriguez-Martinez JM, Cano ME, Velasco C, Martinez-Martinez L, Pascual A. 2011. Plasmid- mediated quinolone resistance: an update. J Infect Chemother 17: 149-182. https://doi.org/10.1007/s10156-010-0120-2
  34. Rossolini GM, D'Andrea MM, Mugnaioli C. 2008. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 14: 33-41. https://doi.org/10.1111/j.1469-0691.2007.01867.x
  35. Schmiedel J, Falgenhauer L, Domann E, Bauerfeind R, Prenger-Berninghoff E, Imirzalioglu C, Chakraborty T. 2014. Multiresistant extended-spectrum ${\beta}$-lactamase-producing Enterobacteriaceae from humans, cmpanion animals and horses in Central Hesse, Germany. BMC Microbiol 14: 187. https://doi.org/10.1186/1471-2180-14-187
  36. Shaheen BW, Nayak R, Foley SL, Boothe DM. 2013. Chromosomal and plasmid-mediated fluoroquinolone resistance mechanisms among broad-spectrum-cephalosporin-resistant Escherichia coli isolates recovered from companion animals in the USA. J Antimicrob Chemother 68: 1019-1024. https://doi.org/10.1093/jac/dks514
  37. Shibata N, Kurokawa H, Doi Y, Yagi T, Yamane K, Wachino J, Suzuki S, Kimura K, Ishikawa S, Kato H, Ozawa Y, Shibayama K, Kai K, Konda T, Arakawa Y. 2006. PCR classification of CTX-M-type beta-lactamase genes identified in clinically isolated gram-negative bacilli in Japan. Antimicrob Agents Chemother 50: 791-795. https://doi.org/10.1128/AAC.50.2.791-795.2006
  38. So JH, Kim J, Bae IK, Jeong SH, Kim SH, Lim SK, Park YH, Lee K. 2012. Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals. Diagn Microbiol Infect Dis 73: 195-199. https://doi.org/10.1016/j.diagmicrobio.2012.03.010
  39. Sun Y, Zeng Z, Chen S, Ma J, He L, Liu Y, Deng Y, Lei T, Zhao J, Liu JH. 2010. High prevalence of bla (CTX-M) extended-spectrum ${\beta}$-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin Microbiol Infect 16: 1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x
  40. Tamang MD, Nam HM, Jang GC, Kim SR, Chae MH, Jung SC, Byun JW, Park YH, Lim SK. 2012. Molecular characterization of extended-spectrum ${\beta}$-lactamase-producing and plasmid- mediated AmpC ${\beta}$-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob Agents Chemother 56: 2705-2712. https://doi.org/10.1128/AAC.05598-11
  41. Tian GB, Wang HN, Zhang AY, Zhang Y, Fan WQ, Xu CW, Zeng B, Guan ZB, Zou LK. 2012. Detection of clinically important ${\beta}$-lactamases in commensal Escherichia coli of human and swine origin in western China. J Med Microbiol 61: 233-238. https://doi.org/10.1099/jmm.0.036806-0
  42. Timofte D, Maciuca IE, Williams NJ, Wattret A, Schmidt V. 2016. Veterinary hospital dissemination of CTX-M-15 extended-spectrum beta-lactamase-producing Escherichia coli ST410 in the United Kingdom. Microb Drug Resist 22: 609-615. https://doi.org/10.1089/mdr.2016.0036
  43. Wang G, Huang T, Surendraiah PK, Wang K, Komal R, Zhuge J, Chern CR, Kryszuk AA, King C, Wormser GP. 2013. CTX-M ${\beta}$-lactamase-producing Klebsiella pneumoniae in suburban New York City, New York, USA. Emerg Infect Dis 19: 1803-1810. https://doi.org/10.3201/eid1911.121470
  44. Zogg AL, Simmen S, Zurfluh K, Stephan R. Schmitt SN, Nuesch-Inderbinen M. 2018. High prevalence of extended-spectrum ${\beta}$-lactamase producing Enterobacteriaceae among clinical isolates from cats and dogs admitted to a veterinary hospital in Switzerland. Front Vet Sci 5: 62. https://doi.org/10.3389/fvets.2018.00062