References
- L. Badea, M. Discacciati, and A. Quarteroni, Numerical analysis of the Navier-Stokes/Darcy coupling, Numer. Math. 115 (2010), no. 2, 195-227. https://doi.org/10.1007/s00211-009-0279-6
- G. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid. Mech. 30 (1967), 197-207. https://doi.org/10.1017/S0022112067001375
- A. Boukabache and N. Kechkar, A unified stabilized finite volume method for Stokes and Darcy equations, J. Korean Math. Soc. 56 (2019), no. 4, 1083-1112. https://doi.org/10.4134/JKMS.j180641
- M. Cai, M. Mu, and J. Xu, Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal. 47 (2009), no. 5, 3325-3338. https://doi.org/10.1137/080721868
- Y. Cao, Y. Chu, X. He, and M. Wei, Decoupling the stationary Navier-Stokes-Darcy system with the Beavers-Joseph-Saffman interface condition, Abstr. Appl. Anal. 2013 (2013), Art. ID 136483, 10 pp. https://doi.org/10.1155/2013/136483
- P. Chidyagwai, A multilevel decoupling method for the Navier-Stokes/Darcy model, J. Comput. Appl. Math. 325 (2017), 74-96. https://doi.org/10.1016/j.cam.2017.04.044
- P. Chidyagwai and B. Riviere, On the solution of the coupled Navier-Stokes and Darcy equations, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 47-48, 3806-3820. https://doi.org/10.1016/j.cma.2009.08.012
- X. Dai and X. Cheng, A two-grid method based on Newton iteration for the Navier-Stokes equations, J. Comput. Appl. Math. 220 (2008), no. 1-2, 566-573. https://doi.org/10.1016/j.cam.2007.09.002
- M. Discacciati, E. Miglio, and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math. 43 (2002), no. 1-2, 57-74. https://doi.org/10.1016/S0168-9274(02)00125-3
- M. Discacciati and R. Oyarzua, A conforming mixed finite element method for the Navier-Stokes/Darcy coupled problem, Numer. Math. 135 (2017), no. 2, 571-606. https://doi.org/10.1007/s00211-016-0811-4
- G. Du, Y. Hou, and L. Zuo, Local and parallel finite element methods for the mixed Navier-Stokes/Darcy model, Int. J. Comput. Math. 93 (2016), no. 7, 1155-1172. https://doi.org/10.1080/00207160.2015.1026338
- G. Du and L. Zuo, Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions, Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 5, 1331-1347. https://doi.org/10.1016/S0252-9602(17)30076-0
- V. Girault and B. Riviere, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM J. Numer. Anal. 47 (2009), no. 3, 2052-2089. https://doi.org/10.1137/070686081
- M. L. Hadji, A. Assala, and F. Z. Nouri, A posteriori error analysis for Navier-Stokes equations coupled with Darcy problem, Calcolo 52 (2015), no. 4, 559-576. https://doi.org/10.1007/s10092-014-0130-z
- X. He, J. Li, Y. Lin, and J. Ming, A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition, SIAM J. Sci. Comput. 37 (2015), no. 5, S264-S290. https://doi.org/10.1137/140965776
- P. Huang, An efficient two-level finite element algorithm for the natural convection equations, Appl. Numer. Math. 118 (2017), 75-86. https://doi.org/10.1016/j.apnum.2017.02.012
- P. Huang, X. Feng, and D. Liu, Two-level stabilized method based on Newton iteration for the steady Smagorinsky model, Nonlinear Anal. Real World Appl. 14 (2013), no. 3, 1795-1805. https://doi.org/10.1016/j.nonrwa.2012.11.011
- W. Jager and A. Mikelic, On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math. 60 (2000), no. 4, 1111-1127. https://doi.org/10.1137/S003613999833678X
- H. Jia, H. Jia, and Y. Huang, A modified two-grid decoupling method for the mixed Navier-Stokes/Darcy model, Comput. Math. Appl. 72 (2016), no. 4, 1142-1152. https://doi.org/10.1016/j.camwa.2016.06.033
- W. J. Layton, F. Schieweck, and I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 40 (2002), no. 6, 2195-2218. https://doi.org/10.1137/S0036142901392766
- C. Li and G. P. Peterson, Evaporation/boiling in thin capillary wicks (II)-effects of volumetric porosity and mesh size, J. Heat Transfer 128 (2006), 1320-1328. https://doi.org/10.1115/1.2349508
- W. Li and P. Huang, A two-step decoupled finite element algorithm for a nonlinear fluid-fluid interaction problem, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), 107-118.
- Z. Li, M. Lai, X. Peng, and Z. Zhang, A least squares augmented immersed interface method for solving Navier-Stokes and Darcy coupling equations, Comput. & Fluids 167 (2018), 384-399. https://doi.org/10.1016/j.compfluid.2018.03.032
- D. A. Nield and A. Bejan, Convection in Porous Media, second edition, Springer-Verlag, New York, 1999. https://doi.org/10.1007/978-1-4757-3033-3
- Y. Qin and Y. Hou, Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Navier-Stokes/Darcy model, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 4, 1361-1369. https://doi.org/10.1016/S0252-9602(18)30819-1
- Y. Shen, D. Han, and X. Shao, Modified two-grid method for solving coupled Navier-Stokes/Darcy model based on Newton iteration, Appl. Math. J. Chinese Univ. Ser. B 30 (2015), no. 2, 127-140. https://doi.org/10.1007/s11766-015-3291-x
- R. Temam, Navier-Stokes Equations, revised edition, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1979.
- L. Wang, J. Li, and P. Huang, An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method, Int. Commun. Heat Mass Transf. 98 (2018), 183-190. https://doi.org/10.1016/j.icheatmasstransfer.2018.02.019
- Y. Wu and L. Mei, A non-conforming finite volume element method for the two-dimensional Navier-Stokes/Darcy system, Comput. Appl. Math. 37 (2018), no. 1, 457-474. https://doi.org/10.1007/s40314-016-0355-3
- J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput. 15 (1994), no. 1, 231-237. https://doi.org/10.1137/0915016
- J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal. 33 (1996), no. 5, 1759-1777. https://doi.org/10.1137/S0036142992232949
- Y. Zhang, Y. Hou, and L. Shan, Stability and convergence analysis of a decoupled algorithm for a fluid-fluid interaction problem, SIAM J. Numer. Anal. 54 (2016), no. 5, 2833-2867. https://doi.org/10.1137/15M1047891
- J. Zhao and T. Zhang, Two-grid finite element methods for the steady Navier-Stokes/Darcy model, East Asian J. Appl. Math. 6 (2016), no. 1, 60-79. https://doi.org/10.4208/eajam.080215.111215a
- L. Zuo and G. Du, A parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem, Numer. Algorithms 77 (2018), no. 1, 151-165. https://doi.org/10.1007/s11075-017-0308-y