DOI QR코드

DOI QR Code

Prediction of HLA-A*0201-Restricted Antigenic Epitopes Targeting Multiple Myeloma

다발성 골수종 적용을 위한 HLA-A*0201 제한 항원성 펩타이드 예측

  • 강윤중 (중원대학교 의생명과학과)
  • Received : 2020.05.03
  • Accepted : 2020.06.20
  • Published : 2020.06.28

Abstract

Protein antigens and their epitopes are targets for epitope based vaccines. There are many prediction servers which can be used for identification of binding peptides to MHC molecules. However, choosing of appropriate prediction servers is difficult. This study compared data obtained from prediction servers and evaluate them in scope of binding affinity to MHC-I molecules. Here we predicted HLA-A2-restricted cytotoxic T lymphocyte epitopes from survivin as a potential target for multiple myeloma. We suggest a procedure for prediction of antigenic peptides which could bind to MHC-I molecule. The results of this study will assist researchers in selection and prediction of noble antigenic peptides.

단백질 항원에 존재하는 에피토프는 에피토프를 기반으로 한 백신 개발의 표적이 되고 있다. 인간의 주조 직적합 복합체 (MHC-1)에 결합하는 펩타이드를 확인할 수 있는 여러 서버들이 보고되고 있으나 인간의 MHC-I 분자의 수가 매우 많고 각 서버 검색 방법의 표준화 부재 등의 문제로 인해 펩타이드 예측에 적절한 서버를 선정하는 것이 쉽지 않다. 본 논문에서는 MHC-I 결합 펩타이드를 예측하는 서버 30 종을 비교하였으며, 다발성 골수종에 적용하기 위해 survivin 단백질로부터 사람의 HLA-A2 제한 펩타이드를 예측하였다. 본 연구의 결과는 MHC-I 결합 예측의 표준화된 방법을 제시하고 펩타이드 에피토프를 예측하는데 도움을 줄 것이다.

Keywords

References

  1. J. Ehreth (2003). The value of vaccination: a global perspective. Vaccine, 21(27-30), 4105-4117. DOI : 10.1016/s0264-410x(03)00377-3
  2. V. Brusic, J. T. August & N. Petrovsky. (2005). Information technologies for vaccine research. Expert Rev Vaccines, 4(3), 407-417. DOI : 10.1586/14760584.4.3.407
  3. A. W. Purcell, J. McCluskey & J. Rossjohn. (2007). More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov, 6(5), 404-414. DOI : 10.1038/nrd2224
  4. P. Riedl, J. Reimann & R. Schirmbeck. (2006). Complexes of DNA vaccines with cationic, antigenic peptides are potent, polyvalent CD8(+) T-cell-stimulating immunogens. Methods in molecular medicine, 127, 159-169. DOI : 10.1385/1-59745-168-1:159
  5. S. H. van der Burg, M. S. Bijker, M. J. Welters, R. Offringa & C. J. Melief. (2006). Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Advanced drug delivery reviews, 58(8), 916-930. DOI : 10.1016/j.addr.2005.11.003
  6. A. Muzzi, V. Masignani & R. Rappuoli. (2007). The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials, Drug Discov Today, 12(11.12), 429-439. DOI : 10.1016/j.drudis.2007.04.008
  7. P. Van Der Bruggen et al. (2002). Tumor specific shared antigenic peptides recognized by human T cells. Immunol Rev, 188, 51-64. DOI : 10.1034/j.1600-065X.2002.18806.x
  8. G. Parmiani, A. De Filippo, L. Novellino & C. Castelli. (2007). Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol, 178(4), 1975-1979. DOI : 10.4049/jimmunol.178.4.1975
  9. J. Robinson, M. J. Waller, S. C. Fail & S. G. Marsh (2006). The IMGT/HLA and IPD databases. Hum Mutat, 27(12), 1192-1199. DOI : 10.1093/nar/gkz950
  10. V. Brusic, V. B. Bajic & N. Petrovsky. (2004). Computational methods for prediction of T-cell epitopes. a framework for modelling testing, and applications. Methods, 34(4), 436-443. DOI : 10.1016/j.ymeth.2004.06.006
  11. B. Korber, M. LaBute & K. Yusim. (2006). Immunoinformatics comes of age. PLoS Comput Biol, 2(6), e71. DOI : 10.1371/journal.pcbi.0020071
  12. K. Yu, N. Petrovsky, C. Schonbach, J. Y. Koh & V. Brusic. (2002). Methods for prediction of peptide binding to MHC molecules: a comparative study, Molecular medicine, 8(3), 137-148. DOI : doi.org/10.1007/BF03402006
  13. B. Peters et al. (2006). A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol, 2(6), e65. DOI : 10.1371/journal.pcbi.0020065
  14. B. Trost, M. Bickis & A. Kusalik. (2007). Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools. Immunome Res, 3(1), 5. DOI : 10.1186/1745-7580-3-5
  15. V. Pasquetto et al. (2005). HLA-A* HLA-A*1101, and HLA-B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products. J Immunol, 175(8), 5504-5515. DOI : 10.4049/jimmunol.175.8.5504
  16. C. undegaard C, O. Lund, C. Kesmir, S. Brunak & M. Nielsen (2007). Modeling the adaptive immune system: predictions and simulations. Bioinformatics, 23(24), 3265-3275. DOI : 10.1093/bioinformatics/btm471
  17. N. Tiwari, N. Garbi, T. Reinheckel, G. Moldenhauer, G. J. Hammerling & F. Momburg (2007). A transporter associated with antigen-processing independent vacuolar pathway for the MHC class I-mediated presentation of endogenous transmembrane proteins. J Immunol, 178(12), 7932-7942. DOI : 10.4049/jimmunol.178.12.7932
  18. O. Demirel et al. (2007). Identification of a lysosomal peptide transport system induced during dendritic cell development. J Biol Chem, 282(52), 37836-37843. DOI : 10.1074/jbc.M708139200
  19. T. Kurotaki et al. (2007). Efficient cross-presentation by heat shock protein 90-peptide complex-loaded dendritic cells via an endosomal pathway. J Immunol, 179(3), 1803-1813. DOI : 10.4049/jimmunol.179.3.1803
  20. J. A. Swets. (1998). Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293. DOI : 10.1126/science.3287615
  21. Y. Louzoun, T. Vider & M. Weigert. (2006). T-cell epitope repertoire as predicted from human and viral genomes. Mol Immunol, 43(6), 559-569. DOI : 10.1016/j.molimm.2005.04.017