DOI QR코드

DOI QR Code

Characterization of MABIK Microalgae with Biotechnological Potentials

  • Jo, Seung-Woo (Department of Energy Science, Kyungpook National University) ;
  • Kang, Nam Seon (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Lee, Jung A (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Kim, Eun Song (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Kim, Kyeong Mi (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Yoon, Moongeun (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Hong, Ji Won (Department of Hydrogen and Renewable Energy, Kyungpook National University) ;
  • Yoon, Ho-Sung (Department of Energy Science, Kyungpook National University)
  • Received : 2020.01.07
  • Accepted : 2020.05.19
  • Published : 2020.06.30

Abstract

This article emphasized the physiological characteristics of the selected marine microalgal strains obtained from the culture collection of the National Marine Biodiversity Institute of Korea (MABIK). Therefore, in this study, 13 different marine microalgal strains belonging to the phylum Chlorophyta were analyzed for the composition of fatty acids, elements, photosynthetic pigments, and monosaccharides, as well as the lipid and protein contents. The results presented that the primary fatty acids were palmitic (C16:0), palmitoleic (C16:1 n-7), stearic (C18:0), oleic (C18:1 n-9), linoleic (C18:2 n-6), and α-linolenic (ALA, C18:3 n-3) acid in the evaluated microalgae. The lipid contents of heterotrophically grown strains ranged from 15.1% to 20.4%. The calorific values of the strains were between 17.4 MJ kg-1 and 21.3 MJ kg-1. The major monosaccharides were galactose, glucose, and mannose, while the primary photosynthetic pigments were chlorophyll-a (Chla), chlorophyll-b (Chlb), and lutein, respectively. Based on the results, the microalgal strains showed high potentials in the use of microalgae-based technologies to produce biochemicals, food, and renewable fuels as they are rich in sustainable sources of high-value bio-compounds, such as antioxidants, carbohydrates, and fatty acids.

Keywords

References

  1. Ministry of Oceans and Fisheries of Korea. 2019. 1st Administrative Master Plan for Marine Bioresources (2019-2023). http://www.mof.go.kr/article/view.do?articleKey=24487&boardKey=35&menuKey=402tPageNo=1 Accessed 17 Jan 2019
  2. Ministry of Oceans and Fisheries of Korea. 2019. Implementation Plan in 2019 for the 1st Administrative Master Plan for Marine Bioresources (2019-2023). http://www.mof.go.kr/article/view.do?articleKey=28261&boardKey=22&menuKey=386tPageNo=1 Accessed 21 Dec 2019
  3. Cuellar-Bermudez, S. P., Aguilar-Hernandez, I., Cardenas- Chavez, D. L., Ornelas-Soto, N., Romero-Ogawa, M. A. and Parra-Saldivar, R. 2015. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 8, 190-209. https://doi.org/10.1111/1751-7915.12167
  4. Leu, S. and Boussiba, S. 2014. Advances in the production of high-value products by microalgae. Ind. Biotechnol. 10, 169-183.
  5. Pulz, O. and Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65, 635-648. https://doi.org/10.1007/s00253-004-1647-x
  6. Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87-96. https://doi.org/10.1263/jbb.101.87
  7. Huntley, M. E. and Redalje, D. G. 2007. $CO_2$ Mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig. Adapt. Strat. Glob. Change 12, 573-608. https://doi.org/10.1007/s11027-006-7304-1
  8. Li, Y., Horsman, M., Wu, N., Lan, C. Q. and Dubois-Calero, N. 2008. Biofuels from microalgae. Biotechnol. Prog. 24, 815-820.
  9. Raja, A., Vipin, C. and Aiyappan, A., 2013. Biological importance of marine algaedan overview. Int. J. Curr. Microbiol. App. Sci. 2, 222-227.
  10. Mehta, L. R., Dworkin, R. H. and Schwid, S. R. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5, 82-92.
  11. Buscemi, S., Corleo, D., Di Pace, F., Petroni, M., Satriano, A. and Marchesini. G. 2018. The effect of lutein on eye and extra-eye health. Nutrients 10, 1321. https://doi.org/10.3390/nu10091321
  12. Dionisio-Sese, M. L. 2010. Aquatic microalgae as potential sources of UV-screening compounds. Philippine J. Sci. 139, 5-19.
  13. Priyadarshani, I. and Rath, B. 2012. Commercial and industrial applications of micro algae - a review. J. Algal Biomass Utln. 3, 89-100.
  14. Suh, S. S., Hwang, J., Park, M., Seo, H. H., Kim, H. S., Lee, J. H., Moh, S. H. and Lee, T. K. 2014. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar. Drugs 12, 5174-5187. https://doi.org/10.3390/md12105174
  15. Craggs, R. J., McAuley, P. J. and Smith, V. J. 1997. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res. 31, 1701-1707. https://doi.org/10.1016/S0043-1354(96)00093-0
  16. Jiang, L., Luo, S., Fan, X., Yang, Z. and Guo, R. 2011. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of $CO_2$. Appl. Energy 88, 3336-3341. https://doi.org/10.1016/j.apenergy.2011.03.043
  17. Cho, S., Lee, N., Park, S., Yu, J., Luong, T. T., Oh, Y. K. and Lee, T. 2013. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technol. 131, 515-520. https://doi.org/10.1016/j.biortech.2012.12.176
  18. Miranda, A. F., Ramkumar, N., Andriotis, C., Holtkemeier, T., Yasmin, A., Rochfort, S., Wlodkowic, D., Morrison, P., Roddick, F., Spangenberg, G. and Lal, B. 2017. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol. Biofuels 10, 120. https://doi.org/10.1186/s13068-017-0798-9
  19. Whitton, R., Ometto, F., Pidou, M., Jarvis, P., Villa, R. and Jefferson, B. 2015. Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ. Technol. Rev. 4, 133-148. https://doi.org/10.1080/21622515.2015.1105308
  20. Slade, R. and Bauen, A. 2013. Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg. 53, 29-38. https://doi.org/10.1016/j.biombioe.2012.12.019
  21. Hong, J. W., Kang, N. S., Jang, H. S., Kim, H. J., An, Y. R., Yoon, M. and Kim, H. S. 2019. Biotechnological potential of Korean marine microalgal strains and its future prospectives. Ocean Polar Res. 41, 289-309. https://doi.org/10.4217/OPR.2019.41.4.289
  22. Breuer, G., Evers, W. A. C., de Vree, J. H., Kleinegris, D. M. M., Martens, D. E., Wijffels, R. H. and Lamers, P. P. 2013 Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 80, e50628.
  23. Kang, N. S., Lee, J. A., Jang, H. S., Kim, K. M., Kim, E. S., Yoon, M. and Hong, J. W. 2019. First record of a marine microalgal species, Chlorella gloriosa (Trebouxiophyceae) isolated from the Dokdo Islands, Korea. Korean J. Environ. Biol. 37, 527-535.
  24. Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S. and Yang, J. W. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol, 155, 330-333. https://doi.org/10.1016/j.biortech.2013.12.077
  25. Friedl, A., Padouvas, E., Rotter, H. and Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191-198. https://doi.org/10.1016/j.aca.2005.01.041
  26. Mariotti, F, Tomé, D and Mirand, P. P. 2008. Converting nitrogen into protein-beyond 6.25 and Jones' factors. Crit. Rev. Food Sci. Nutr. 48, 177-184. https://doi.org/10.1080/10408390701279749
  27. Zapata, M., Rodríguez, F. and Garrido, J. L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: A new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29-45. https://doi.org/10.3354/meps195029
  28. Jang, H. S., Kang, N. S., Kim, K. M., Jeon, B. H., Park, J. S. and Hong, J. W. 2017. Description and application of a marine microalga Auxenochlorella protothecoides isolated from Ulleung-do. J. Life Sci. 27, 1152-1160. https://doi.org/10.5352/JLS.2017.27.10.1152
  29. Knothe, G. 2009. Improving biodiesel fuel properties by modifying fatty ester composition. Energ. Environ. Sci. 2, 759-766 https://doi.org/10.1039/b903941d
  30. Lardon, L., Helias, A., Sialve, B., Steyer, J. P. and Bernard, O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 17, 6475-6481.
  31. Prabandono, K. and Amin, S. 2015. Biofuel production from microalgae. In: Kim, S. W. (ed), Handbook of marine microalgae: biotechnology advances. Academic Press, London, UK, pp. 145-158.
  32. Kumar, B. R., Deviram, G., Mathimani, T., Duc, P. A., and Pugazhendhi, A. 2019. Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 17, 583-588. https://doi.org/10.1016/j.bcab.2019.01.017
  33. Mehta, L. R., Dworkin, R. H. and Schwid, S. R. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5, 82-92. https://doi.org/10.1038/ncpneuro1009
  34. Jeromson, S., Gallagher, I. J., Galloway, S. D. and Hamilton. D. L. 2015. Omega-3 fatty acids and skeletal muscle health. Mar. Drugs 13, 6977-7004. https://doi.org/10.3390/md13116977
  35. Kang, J. X. 2011. Omega-3: A link between global climate change and human health. Biotechnol. Adv. 29, 388-390. https://doi.org/10.1016/j.biotechadv.2011.02.003
  36. Ross AB, JM Jones, ML Kubacki and T Bridgeman. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 99, 6494-6504. https://doi.org/10.1016/j.biortech.2007.11.036
  37. Lam, M. K. and Lee, K. T. 2015. Bioethanol production from microalgae. In: Kim, S. W. (ed), Handbook of marine microalgae: biotechnology advances. Academic Press, London, UK, pp. 197-208.
  38. Ortiz-Tena, J. G., Rühmann, B., Schieder, D. and Sieber, V. 2016. Revealing the diversity of algal monosaccharides: fast carbohydrate fingerprinting of microalgae using crude biomass and showcasing sugar distribution in Chlorella vulgaris by biomass fractionation. Algal Res. 17, 227-235. https://doi.org/10.1016/j.algal.2016.05.008
  39. Liu, X., Zhu, D., Sun, L., Gao, Y. and Wang, C. 2013. Effect of L-arabinose on the postprandial blood glucose and body weight. J. Hyg. Res. 42, 295-297.
  40. Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C. and Inoue, S. 1996. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metab. Clin. Exp. 45, 1368-1374. https://doi.org/10.1016/S0026-0495(96)90117-1
  41. Becker, E. W. 2013. Microalgae for human and animal nutrition. In: Richmond, A. and Hu, Q. (eds), Handbook of microalgal culture: applied phycology and biotechnology. John Wiley & Sons, Chichester, UK, pp. 461-503.
  42. Buscemi, S., Corleo, D., Di Pace, F., Petroni, M., Satriano, A. and Marchesini, G. 2018. The effect of lutein on eye and extra-eye health. Nutrients 10, 1321. https://doi.org/10.3390/nu10091321
  43. Ausich, R. L. 1997. Commercial opportunities for carotenoid production by biotechnology. Pure Appl. Chem. 69, 2169-2173. https://doi.org/10.1351/pac199769102169
  44. Del Campo, J. A., Garcia-Gonzalez, M. and Guerrero, M. G. 2007. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl. Microbiol. Biotechnol. 74, 1163-1174. https://doi.org/10.1007/s00253-007-0844-9
  45. Piccaglia, R., Marotti, M. and Grandi, S. 1998. Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind. Crops Prod. 8, 45-51. https://doi.org/10.1016/S0926-6690(97)10005-X
  46. Vechpanich, J. and Shotipruk, A. 2011. Recovery of free lutein from Tagetes erecta: Determination of suitable saponification and crystallization conditions. Sep. Sci. Technol. 46, 265-271. https://doi.org/10.1080/01496395.2010.506904
  47. Patterson, E., Wall, R., Fitzgerald, G. F., Ross, R. P. and Stanton, C. 2012. Health implications of high dietary ${\omega}$-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012, 539426. https://doi.org/10.1155/2012/539426
  48. Simopoulos, A.P. 2008. The importance of the ${\omega}$-6/${\omega}$-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 233, 674-688. https://doi.org/10.3181/0711-MR-311
  49. De Roos, B., Sneddon, A. A., Sprague, M., Horgan, G. W. and Brouwer, I. A. 2017. The potential impact of compositional changes in farmed fish on its health-giving properties: Is it time to reconsider current dietary recommendations? Public Health Nutr. 20, 2042-2049. https://doi.org/10.1017/S1368980017000696
  50. Sprague, M., Dick, J. R. and Tocher, D. R. 2016. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Sci. Rep. 6, 21892. https://doi.org/10.1038/srep21892
  51. Kang, N. S., Kim, E. S., Lee, J. A., Kim, K. M., Kwak, M. S., Yoon, M. and Hong, J. W. 2020. First report of the dinoflagellate genus Effrenium in the East Sea of Korea: morphological, genetic, and fatty acid characteristics. Sustainability 12, 3928. https://doi.org/10.3390/su12093928