References
- Cherry, J. D., Olschowka, J. A. and O'Banion, M. K. 2014. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11, 98. https://doi.org/10.1186/1742-2094-11-98
- Choi, H. I., Choi, J. P., Seo, J., Kim, B. J., Rho, M., Han, J. K. and Kim, J. G. 2017. Helicobacter pylori-derived extracellular vesicles increased in the gastric juices of gastric adenocarcinoma patients and induced inflammation mainly via specific targeting of gastric epithelial cells. Exp. Mol. Med. 49, e330. https://doi.org/10.1038/emm.2017.47
- Daulatzai, M. A. 2016. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease in focal cerebral ischemic rats. Am. J. Neurodegener. Dis. 5, 102-130.
- de Jesus Raposo, M. F., de Morais, A. M. and de Morais, R. M. 2015. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs 13, 2967-3028. https://doi.org/10.3390/md13052967
-
Fan, H., Wu, P. F., Zhang, L., Hu Z. L., Wang, W., Guan, X. L., Luo, H., Ni, M., Yang, J. W., Li, M. X., Chen, J. G. and Wang, F. 2015. Methionine sulfoxide reductase A negatively controls microglia-mediated neuroinflammation via inhibiting ROS/MAPKs/NF-
${\kappa}B$ signaling pathways through a catalytic antioxidant function. Antioxid. Redox Signal. 22, 832-847. https://doi.org/10.1089/ars.2014.6022 - Fernando, I. P., Kim, M., Son, K. T., Jeong, Y. and Jeon, Y. J. 2016. Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. J. Med. Food 19, 615-628. https://doi.org/10.1089/jmf.2016.3706
- Fetisova, E., Chernyak, B., Korshunova, G., Muntyan, M. and Skulachev, V. 2017. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr. Med. Chem. 24, 2086-2114.
- Garcia, G., Nanni, S., Figueira, I., Ivanov, I., McDougall, G. J., Stewart, D., Ferreira, R. B., Pinto, P., Silva, R. F., Brites, D. and Santos, C. N. 2017. Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation. Food Chem. 215, 274-283. https://doi.org/10.1016/j.foodchem.2016.07.128
- Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. and Gage, F. H. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934. https://doi.org/10.1016/j.cell.2010.02.016
- Gomez-Nicola, D. and Perry, V. H. 2015. Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 21, 169-184. https://doi.org/10.1177/1073858414530512
- Iizumi, T., Takahashi, S., Mashima, K., Minami, K., Izawa, Y., Abe, T., Hishiki, T., Suematsu, M., Kajimura, M. and Suzuki, N. 2016. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J. Neuroinflammation 13, 99. https://doi.org/10.1186/s12974-016-0564-0
- Joh, E. H. and Kim, D. H. 2010. Lancemaside A inhibits lipopolysaccharide-induced inflammation by targeting LPS/TLR4 complex. J. Cell. Biochem. 111, 865-871. https://doi.org/10.1002/jcb.22773
- Kang, H. J., Jeong, J. S., Park, N. J., Go, G. B., Kim, S. O., Park, C., Kim, B. W., Hong, S. H. and Choi, Y. H. 2017. An ethanol extract of Aster yomena (Kitam.) Honda inhibits lipopolysaccharide-induced inflammatory responses in murine RAW 264.7 macrophages. Biosci. Trends 11, 85-94. https://doi.org/10.5582/bst.2016.01217
- Kim, S. H., Kim, K. J., Kim, J. H., Kwak, J. H., Song, H., Cho, J. Y., Hwang, D. Y., Kim, K. S. and Jung, Y. S. 2017. Comparision of doxorubicin-induced cardiotoxicity in the ICR mice of different sources. Lab. Anim. Res. 33, 165-170. https://doi.org/10.5625/lar.2017.33.2.165
- Kim, Y. E., Hwang, C. J., Lee, H. P., Kim, C. S., Son, D. J., Ham, Y. W., Hellstrom, M., Han, S. B., Kim, H. S., Park, E. K. and Hong, J. T. 2017. Inhibitory effect of punicalagin on lipopolysaccharide-induced neuroinflammation, oxidative stress and memory impairment via inhibition of nuclear factor-kappaB. Neuropharmacology 117, 21-32. https://doi.org/10.1016/j.neuropharm.2017.01.025
- Kopitar-Jerala, N. 2015. Innate immune response in brain, NF-Kappa B signaling and cystatins. Front. Mol. Neurosci. 8, 73. https://doi.org/10.3389/fnmol.2015.00073
-
Lee, M. B., Lee, J. H., Hong, S. H., You, J. S., Nam, S. T., Kim, H. W., Park, Y. H., Lee, D., Min, K. Y., Park, Y. M., Kim, Y. M., Kim, H. S. and Choi, W. S. 2017. JQ1, a BET inhibitor, controls TLR4-induced IL-10 production in regulatory B cells by BRD4-NF-
${\kappa}B$ axis. BMB Rep. 50, 640-646. https://doi.org/10.5483/BMBRep.2017.50.12.194 - Li, Q. and Verma, I. M. 2002. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725-734. https://doi.org/10.1038/nri910
- Ohl, K., Tenbrock, K. and Kipp, M. 2016. Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp. Neurol. 277, 58-67. https://doi.org/10.1016/j.expneurol.2015.11.010
-
Park, Y. S., Kwon, Y. J. and Chun, Y. J. 2017. CYP1B1 Activates Wnt/
${\beta}$ -catenin signaling through suppression of Herc5-mediated ISGylation for protein degradation on${\beta}$ -catenin in HeLa cells. Toxicol. Res. 33, 211-218. https://doi.org/10.5487/TR.2017.33.3.211 - Pesando, D. and Caram, B. 1984. Screening of marine algae from the French mediterranean coast for antibacterial and antifungal activity. Bot. Mar. 27, 381-386.
- Qin, L., Liu, Y., Hong, J. S. and Crews, F. T. 2013. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 61, 855-868. https://doi.org/10.1002/glia.22479
- Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M. and Greiner, R. 2017. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res. Int. 99, 1066-1083. https://doi.org/10.1016/j.foodres.2016.08.016
- Slusarczyk, J., Trojan, E., Glombik, K., Piotrowska, A., Budziszewska, B., Kubera, M., Popiolek-Barczyk, K., Lason, W., Mika, J. and Basta-Kaim, A. 2016. Anti-inflammatory properties of tianeptine on lipopolysaccharide-induced changes in microglial cells involve toll-like receptor-related pathways. J. Neurochem. 136, 958-970. https://doi.org/10.1111/jnc.13452
- Tremblay, M. E., Stevens, B., Sierra, A., Wake, H., Bessis, A. and Nimmerjahn, A. 2011. The role of microglia in the healthy brain. J. Neurosci. 31, 16064-16069. https://doi.org/10.1523/JNEUROSCI.4158-11.2011
- von Leden, R. E., Yauger, Y. J., Khayrullina, G. and Byrnes, K. R. 2017. Central nervous system injury and nicotinamide adenine dinucleotide phosphate oxidase: Oxidative stress and therapeutic targets. J. Neurotrauma. 34, 755-764. https://doi.org/10.1089/neu.2016.4486
-
Wang, X., Wang, C., Wang, J., Zhao, S., Zhang, K., Wang, J., Zhang, W., Wu, C. and Yang, J. 2014. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-
${\kappa}B$ , MAPKs and Akt signaling pathways. Neuropharmacology 79, 642-656. https://doi.org/10.1016/j.neuropharm.2014.01.022 -
Yim, M. J., Lee, J. M., Choi, G., Lee, D. S., Park, W. S., Jung, W. K., Park, S., Seo, S. K., Park, J., Choi, I. W. and Ma, S. Y. 2018. Anti-Inflammatory potential of Carpomitra costata ethanolic extracts via inhibition of NF-
${\kappa}B$ and AP-1 activation in LPS-stimulated RAW264.7 macrophages. Evid. Based Complement. Alternat. Med. 2018, 6914514. -
Yoon, H. M., Jang, K. J., Han, M. S., Jeong, J. W., Kim, G. Y., Lee, J. H. and Choi, Y. H. 2013. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-
${\kappa}B$ and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells. Exp. Ther. Med. 5, 957-963. https://doi.org/10.3892/etm.2013.895 - Zheng, J., Hewage, S. R., Piao, M. J., Kang, K. A., Han, X., Kang, H. K., Yoo, E. S., Koh, Y. S., Lee, N. H., Ko, C. S., Lee, J. C., Ko, M. H. and Hyun, J. W. 2016. Photoprotective effect of Carpomitra costata extract against ultraviolet B-induced oxidative damage in human keratinocytes. J. Environ. Pathol. Toxicol. Oncol. 35, 11-28. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2016014003