DOI QR코드

DOI QR Code

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou (Department of Architecture and Civil Engineering, City University of Hong Kong) ;
  • Li, Qiusheng (Department of Architecture and Civil Engineering, City University of Hong Kong) ;
  • Chan, Pakwai (Hong Kong Observatory) ;
  • Zhang, Li (Shenzhen National Climate Observatory) ;
  • Yang, Honglong (Shenzhen National Climate Observatory) ;
  • Li, Lei (Shenzhen National Climate Observatory)
  • Received : 2019.09.26
  • Accepted : 2020.04.25
  • Published : 2020.06.25

Abstract

The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.

Keywords

Acknowledgement

The work described by this study was fully supported by a grant from the National Natural Science Foundation of China (Project No: 51978593), a grant from the Research Grants Council of Hong Kong Special Administrative Region, China (Project No: CityU 11207519) and a grant from the Research Committee of City University of Hong Kong (Project No: 7005037).

References

  1. AIJ-RLB-1996 (1996), "AIJ recommendations for loads on buildings", Architectural Institute of Japan; Tokyo, Japan.
  2. Amano, T., Fukushima, H., Ohkuma, T., Kawaguchi, A. and Goto, S. (1999), "The observation of typhoon winds in Okinawa by Doppler sodar", J. Wind Eng. Ind. Aerod., 83(1-3), 11-20. https://doi.org/10.1016/S0167-6105(99)00057-4.
  3. ASCE 7-98 (1998), "Minimum design loads for buildings and other structures", Amer. Soc. Civil Eng., U.S.A.
  4. Bouffard, F. and Galiana F.D. (2008), "Stochastic security for operations planning with significant wind power generation", In 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century IEEE.
  5. Businger, J.A., Wyngaard, J.C., Izumi, Y. and Bradley, E.F. (1971), "Flux-profile relationships in the atmospheric surface layer", J. Atmos. Sci., 28(2), 181-189. https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.
  6. Cao, S., Tamura, Y., Kikuchi, N., Saito, M., Nakayama, I. and Matsuzaki, Y. (2009), "Wind characteristics of a strong typhoon", J. Wind Eng. Ind. Aerod., 97(1), 11-21. https://doi.org/10.1016/j.jweia.2008.10.002.
  7. Davenport, A.G. (1960), "Rationale for determining design wind velocities", National Research Council of CANADA OTTAWA Div of Building Research.
  8. De Bruin, H.A.R. and Moore, C.J. (1985), "Zero-plane displacement and roughness length for tall vegetation, derived from a simple mass conservation hypothesis", Bound. Lay. Meteorol., 31(1), 39-49. https://doi.org/10.1007/BF00120033.
  9. Deaves, D.M. (1981), "Computations of wind flow over changes in surface roughness", J. Wind Eng. Ind. Aerod., 7(1), 65-94. https://doi.org/10.1016/0167-6105(81)90068-4.
  10. Durst, C.S. (1960), "Wind speeds over short periods of time", Meteor. Mag., 89(1056), 181-187.
  11. Eliasson, I., Offerle, B., Grimmond, C.S.B. and Lindqvist, S. (2006), "Wind fields and turbulence statistics in an urban street canyon", Atmos. Environ., 40(1), 1-16. https://doi.org/10.1016/j.atmosenv.2005.03.031.
  12. Engineering Science Data Unit (1985), "Characteristics of atmospheric turbulence near the ground, part2: single point data for strong winds (neutral atmosphere)", Item No.85020, London, U.K.
  13. Flay, R.G.J. and Stevenson, D.C. (1988), "Integral length scales in strong winds below 20 m", J. Wind Eng. Ind. Aerod., 28(1-3), 21-30. https://doi.org/10.1016/0167-6105(88)90098-0.
  14. GB 50009-2012 (2012), "Load code for the design of building structures", China Building Industry Press, Beijing, China.
  15. Giammanco, I.M., Schroeder, J.L. and Powell, M.D. (2013), "GPS dropwindsonde and WSR-88D observations of tropical cyclone vertical wind profiles and their characteristics", Weather Forecast., 28(1), 77-99. https://doi.org/10.1175/WAF-D-11-00155.1.
  16. Golder, D. (1972), "Relations among stability parameters in the surface layer", Bound. Lay. Meteorol., 3(1), 47-58. https://doi.org/10.1007/BF00769106.
  17. Good, S.P., Soderberg, K., Wang, L. and Caylor, K.K. (2012), "Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laser‐based water vapor isotope analyzers", J. Geophy. Res: Atmos., 117(D15). https://doi.org/10.1029/2011JD017168.
  18. Grimmond, C.S.B. (1998), "Aerodynamic roughness of urban areas derived from wind observations", Bound. Lay. Meteorol., 89(1), 1-24. https://doi.org/10.1023/A:1001525622213.
  19. Harper, B.A., Kepert, J.D. and Ginger, J.D. (2010), "Guidelines for converting between various wind averaging periods in Tropical Cyclone Conditions", World Meteorological Organization, WMO/TD, Geneva, Switzerland.
  20. He, Y.C. and Li, Q.S. (2014), "Dynamic responses of a 492‐m‐high tall building with active tuned mass damping system during a typhoon", Struct. Control Health Monit., 21(5), 705-720. https://doi.org/10.1002/stc.1596.
  21. He, Y.C., Chan, P.W. and Li, Q.S. (2013a), "Wind profiles of tropical cyclones as observed by Doppler wind profiler and anemometer", Wind Struct., 17(4), 419-433. https://doi.org/10.12989/was.2013.17.4.419.
  22. He, Y.C., Chan, P.W. and Li, Q.S. (2013b), "Wind characteristics over different terrains", J. Wind Eng. Ind. Aerod., 120, 51-69. https://doi.org/10.1016/j.jweia.2013.06.016.
  23. He, Y.C., Chan, P.W. and Li, Q.S. (2016), "Observations of vertical wind profiles of tropical cyclones at coastal areas", J. Wind Eng. Ind. Aerod., 152, 1-14. https://doi.org/10.1016/j.jweia.2016.01.009.
  24. He, Y.C., Chan, P.W. and Li, Q.S. (2017), "Estimation of roughness length at Hong Kong International Airport via different micrometeorological methods", J. Wind Eng. Ind. Aerod., 171, 121-136. https://doi.org/10.1016/j.jweia.2017.09.019.
  25. He, Y.H., Han, X.L., Li, Q.S., Zhu, H.P. and He, Y.C. (2018a), "Monitoring of wind effects on 600 m high Ping-An Finance Center during Typhoon Haima", Eng. Struct., 167, 308-326. https://doi.org/10.1016/j.engstruct.2018.04.021.
  26. He, Y.H., Li, Q.S., Zhu, H.P., Han, X.L., He, Y.C. and Li, X. (2018b), "Monitoring of structural modal parameters and dynamic responses of a 600m‐high skyscraper during a typhoon", The Struct. Des. Tall Spec. Build., 27(6), e1456. https://doi.org/10.1002/tal.1456.
  27. Hoebbel, T., Thiele, K. and Clobes, M. (2018), "Wind turbulence parameters from three dimensional full-scale measurements at 344 m high guyed mast site Gartow 2", J. Wind Eng. Ind. Aerod., 172, 341-350. https://doi.org/10.1016/j.jweia.2017.11.001.
  28. Ishizaki, H. (1983), "Wind profiles, turbulence intensities and gust factors for design in typhoon-prone regions", J. Wind Eng. Ind. Aerod., 13(1-3), 55-66. https://doi.org/10.1016/0167-6105(83)90128-9.
  29. Jin, T., Tian, Y., Zhang, C. W. and Coit, D.W. (2013), "Multicriteria planning for distributed wind generation under strategic maintenance", IEEE Transactions on Power Delivery, 28(1), 357-367. https://doi.org/10.1109/TPWRD.2012.2222936.
  30. Kaimal, J.C., Wyngaard, J.C.J., Izumi, Y. and Cote, O.R. (1972), "Spectral characteristics of surface‐layer turbulence", Quart. J. Royal Meteorol. Soc., 98(417), 563-589. https://doi.org/10.1002/qj.49709841707.
  31. Kareem, A. and Tamura, Y. (2013), "Advanced Structural Wind Engineering", Springer, New York, U.S.A.
  32. Kepert, J.D. (2006), "Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges", J. Atmos. Sci., 63(9), 2169-2193. https://doi.org/10.1175/JAS3745.1.
  33. Knupp, K.R., Walters, J. and McCaul, E.W. (2000), "Doppler profiler observations of Hurricane Georges at landfall", Geophy. Res. Lett., 27(20), 3361-3364. https://doi.org/10.1029/1999GL011260.
  34. Krayer, W.R. and Marshall, R.D. (1992), "Gust factors applied to hurricane winds", Bull. Amer. Meteorol. Soc., 73(5), 613-618. https://doi.org/10.1175/1520-0477(1992)073<0613:GFATHW>2.0.CO;2.
  35. Kustas, W.P. and Brutsaert, W. (1986), "Wind profile constants in a neutral atmospheric boundary layer over complex terrain", Bound. Lay. Meteorol., 34(1-2), 35-54. https://doi.org/10.1007/BF00120907.
  36. Lacy, J.R. and Wyllie‐Echeverria, S. (2011), "The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies", Limnology Oceanography: Fluids Environ., 1(1), 38-55. https://doi.org/10.1215/21573698-1152489.
  37. Lettau, H.H. (1957), "Computation of Richardson numbers, classification of wind profiles, and determination of roughness parameters", Exploring the Atmosphere's First Mile, 1, 328-336.
  38. Li, L., Zhou, Y., Wang, H., Zhou, H., He, X. and Wu, T. (2019), "An analytical framework for the investigation of tropical cyclone wind characteristics over different measurement conditions", Appl. Sci., 9(24), 5385. https://doi.org/10.3390/app9245385.
  39. Li, Q.S., Li, X., He, Y.C. and Yi, J. (2017), "Observation of wind fields over different terrains and wind effects on a super-tall building during a severe typhoon and verification of wind tunnel predictions", J. Wind Eng. Ind. Aerod., 162, 73-84. https://doi.org/10.1016/j.jweia.2017.01.008.
  40. Li, Q.S., Zhi, L.H., and Hu, F. (2009), "Field monitoring of boundary layer wind characteristics in urban area", Wind Struct., 12(6), 553. http://ir.nsfc.gov.cn/paperDownload/1000003913211.pdf. https://doi.org/10.12989/was.2009.12.6.553
  41. Masters, F.J., Vickery, P.J., Bacon, P. and Rappaport, E.N. (2010), "Toward objective, standardized intensity estimates from surface wind speed observations", Bull. Amer. Meteorol. Soc., 91(12), 1665-1682. https://doi.org/10.1175/2010BAMS2942.1.
  42. Melbourne, W.H. (1977), "Probability distributions associated with the wind loading structures", Institution Engineers (Australia) Civ Eng Trans, CE19(1), 58-67. http://worldcat.org/issn/08190259.
  43. Park, H.W. and Sohn, H. (2006), "Parameter estimation of the generalized extreme value distribution for structural health monitoring", Probabil. Eng. Mech., 21(4), 366-376. https://doi.org/10.1016/j.probengmech.2005.11.009.
  44. Paulsen, B.M. and Schroeder, J.L. (2005), "An examination of tropical and extratropical gust factors and the associated wind speed histograms", J. Appl. Meteorol., 44(2), 270-280. https://doi.org/10.1175/JAM2199.1.
  45. Peng, Y.B., Wang, S.F. and Li, J. (2018), "Field measurement and investigation of spatial coherence for near-surface strong winds in Southeast China", J. Wind Eng. Ind. Aerod., 172, 423-440. https://doi.org/10.1016/j.jweia.2017.11.012.
  46. Powell, M.D., Vickery, P.J. and Reinhold, T.A. (2003), "Reduced drag coefficient for high wind speeds in tropical cyclones", Nature, 422(6929), 279. https://doi.org/10.1038/nature01481.
  47. Rolando, E.V.A. (2008), "Wind directionality: A reliability-based approach", Ph.D. Dissertation, Texas Tech University, U.S.A.
  48. Roth, M. (2000), "Review of atmospheric turbulence over cities", Quart. J. Royal Meteorol. Soc., 126(564), 941-990. https://doi.org/10.1002/qj.49712656409.
  49. Schroeder, J.L., Edwards, B.P. and Giammanco, I.M. (2009), "Observed tropical cyclone wind flow characteristics", Wind Struct., 12(4), 349-381. https://doi.org/10.12989/was.2009.12.4.349.
  50. Shiau, B.S. and Chen, Y.B. (2002), "Observation on wind turbulence characteristics and velocity spectra near the ground at the coastal region", J. Wind Eng. Ind. Aerod., 90(12-15), 1671-1681. https://doi.org/10.1016/S0167-6105(02)00278-7.
  51. Shu, Z.R., Li, Q.S., He, Y. C. and Chan, P.W. (2017), "Vertical wind profiles for typhoon, monsoon and thunderstorm winds", J. Wind Eng. Ind. Aerod., 168, 190-199. https://doi.org/10.1016/j.jweia.2017.06.004.
  52. Snaiki, R. and Wu, T. (2018), "A semi-empirical model for mean wind velocity profile of landfalling hurricane boundary layers", J. Wind Eng. Ind. Aerod., 180, 249-261. https://doi.org/10.1016/j.jweia.2018.08.004.
  53. Solari, G. and Piccardo, G. (2001), "Probabilistic 3-D turbulence modeling for gust buffeting of structures", Probab. Eng. Mech., 16(1), 73-86. https://doi.org/10.1016/S0266-8920(00)00010-2.
  54. Song, L.L., Li, Q.S., Chen, W., Qin, P., Huang, H. and He, Y.C. (2012), "Wind characteristics of a strong typhoon in marine sur-face boundary layer", Wind Struct., 15(1), 1-15. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.668.811&rep=rep1&type=pdf. https://doi.org/10.12989/was.2012.15.1.001
  55. Tamura, Y., Iwatani, Y., Hibi, K., Suda, K., Nakamura, O., Maruyama, T. and Ishibashi, R. (2007), "Profiles of mean wind speeds and vertical turbulence intensities measured at seashore and two inland sites using Doppler sodars", J. Wind Eng. Ind. Aerod., 95(6), 411-427. https://doi.org/10.1016/j.jweia.2006.08.005.
  56. Thomson, D.J. (1982), "Spectrum estimation and harmonic analysis", Proceedings of the IEEE, 70(9), 1055-1096. https://doi.org/10.1109/PROC.1982.12433.
  57. Tieleman, H.W. (2008), "Strong wind observations in the atmospheric surface layer", J. Wind Eng. Ind. Aerod., 96(1), 41-77. https://doi.org/10.1016/j.jweia.2007.03.003.
  58. Tse, K.T., Li, S.W., Chan, P.W., Mok, H.Y. and Weerasuriya, A. U. (2013), "Wind profile observations in tropical cyclone events using wind-profilers and Doppler SODARs", J. Wind Eng. Ind. Aerod., 115, 93-103. https://doi.org/10.1016/j.jweia.2013.01.003.
  59. Vickery, P.J. and Skerlj, P.F. (2005), "Hurricane gust factors revisited", J. Struct. Eng., 131(5), 825-832. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(825).
  60. Vickery, P.J., Wadhera, D., Powell, M.D. and Chen, Y. (2009), "A hurricane boundary layer and wind field model for use in engineering applications", J. Appl. Meteorol. Climatology, 48(2), 381-405. https://doi.org/10.1175/2008JAMC1841.1.
  61. Von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proceedings of the National Academy of Sciences of the United States of America, 34(11), 530. https://doi.org/10.1073/pnas.34.11.530.
  62. Welch, P. (1967), "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms", IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. https://doi.org/10.1109/TAU.1967.1161901.
  63. Yu, B. and Gan Chowdhury, A. (2009), "Gust factors and turbulence intensities for the tropical cyclone environment", J. Appl. Meteorol. Climatology, 48(3), 534-552. https://doi.org/10.1175/2008JAMC1906.1.
  64. Zilitinkevich, S.S., Mammarella, I., Baklanov, A. A. and Joffre, S. M. (2008), "The effect of stratification on the aerodynamic roughness length and displacement height", Bound. Lay. Meteorol., 129(2), 179-190. https://doi.org/10.1007/s10546-008-9307-9.