DOI QR코드

DOI QR Code

Microbleeds in the Corpus Callosum in Anoxic Brain Injury

저산소 뇌 손상에서의 뇌량 미세출혈

  • Chang Su Kim (Department of Radiology, College of Medicine, Hanyang University Guri Hospital) ;
  • Dong Woo Park (Department of Radiology, College of Medicine, Hanyang University Guri Hospital) ;
  • Tae Yoon Kim (Department of Radiology, College of Medicine, Hanyang University Guri Hospital) ;
  • Young-Jun Lee (Department of Radiology, College of Medicine, Hanyang University Hospital) ;
  • Ji Young Lee (Department of Radiology, College of Medicine, Hanyang University Hospital)
  • 김창수 (한양대학교 의과대학 구리병원 영상의학과) ;
  • 박동우 (한양대학교 의과대학 구리병원 영상의학과) ;
  • 김태윤 (한양대학교 의과대학 구리병원 영상의학과) ;
  • 이영준 (한양대학교 의과대학 한양대학교병원 영상의학과) ;
  • 이지영 (한양대학교 의과대학 한양대학교병원 영상의학과)
  • Received : 2019.06.07
  • Accepted : 2019.10.18
  • Published : 2020.09.01

Abstract

Purpose This study was performed to evaluate the relationship between callosal microbleeds and anoxic brain injury. Materials and Methods Twenty-seven patients with anoxic brain injuries were analyzed and retrospectively compared to the control group of patients without a history of anoxic brain injury using Fisher's exact test regarding comorbidities and cerebral microbleeds. The patient group was subdivided according to the presence of callosal microbleeds. Fisher's exact test was used to compare the presence of typical MRI findings of anoxic brain injury, use of cardiopulmonary resuscitation, and prognosis. The Mann-Whitney U test was used to compare the interval between the occurrence of anoxic brain injury to MRI acquisition. Results The prevalence of cerebral microbleeds in the patient group was 29.6%, which was significantly higher than that in the control group at 3.7% (p = 0.012). All cerebral microbleeds in the patient group were in the corpus callosum. Compared with the callosal microbleed-absent group, the callosal microbleed-present group showed a tendency of good prognosis (6/8 vs. 11/19), fewer typical MRI findings of anoxic brain injury (2/8 vs. 10/19), and more cardiopulmonary resuscitation (6/8 vs. 12/19), although these differences did not reach statistical significance (p = 0.35, p = 0.19, and p = 0.45, respectively). Conclusion Callosal microbleeds may be an adjunctive MRI marker for anoxic brain injury.

목적 뇌량 미세출혈이 저산소 뇌 손상과 상관관계가 있는지 알아보고자 하였다. 대상과 방법 임상적으로 진단된 27명의 저산소 뇌 손상 환자군을 대상으로 후향적으로 연구를 진행하였다. 나이와 성별을 매칭한 대조군과 Fisher's exact test로 동반 질환, 뇌 미세출혈 유무를 비교하였다. 환자군은 뇌량 미세출혈의 유무로 나누어 비교하였다. Fisher's exact test로 두 그룹 간의 저산소 뇌 손상의 전형적인 자기공명영상 특징 유무, 심폐소생술 유무, 예후 정도를 비교하였고, Mann-Whitney U test로 저산소 뇌 손상 사건 발생 후 자기공명영상 획득까지의 시간 간격을 비교하였다. 결과 환자군에서 뇌 미세출혈은 29.6%에서 보였으며, 이는 대조군의 3.7%보다 통계적으로 유의하게 높았다(p = 0.012). 환자군에서의 모든 뇌 미세출혈은 뇌량에 국한됐다. 비뇌량 미세출혈군과 비교하여, 뇌량 미세출혈군은 좋은 예후를 보이는 경우가 많았고(6/8 vs. 11/19), 저산소 뇌 손상의 전형적인 자기공명영상 특징을 작은 비율에서 보이며(2/8 vs. 10/19), 심폐소생술이 많은 비율에서 시행됐으나(6/8 vs. 12/19) 통계적 유의성을 보이진 못하였다(p = 0.35, p = 0.19, p = 0.45, respectively). 결론 뇌량 미세출혈은 저산소 뇌 손상을 시사하는 부수적인 자기공명영상 특징이 될 수 있겠다.

Keywords

Acknowledgement

The authors would like to thank research professor Eunwoo Nam for grateful statistical consultation.

References

  1. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165-174 https://doi.org/10.1016/S1474-4422(09)70013-4
  2. Jeon SB, Parikh G, Choi HA, Lee K, Lee JH, Schmidt JM, et al. Acute cerebral microbleeds in refractory status epilepticus. Epilepsia 2013;54:e66-e68 https://doi.org/10.1111/epi.12113
  3. Shoamanesh A, Kwok CS, Benavente O. Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc Dis 2011;32:528-534 https://doi.org/10.1159/000331466
  4. Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol 2009;8:175-191 https://doi.org/10.1016/S1474-4422(09)70014-6
  5. Lahousse L, Vernooij MW, Darweesh SK, Akoudad S, Loth DW, Joos GF, et al. Chronic obstructive pulmonary disease and cerebral microbleeds. The Rotterdam Study. Am J Respir Crit Care Med 2013;188:783-788 https://doi.org/10.1164/rccm.201303-0455OC
  6. Correa DG, Cruz Junior LC, Bahia PR, Gasparetto EL. Intracerebral microbleeds in sepsis: susceptibilityweighted MR imaging findings. Arq Neuropsiquiatr 2012;70:903-904 https://doi.org/10.1590/S0004-282X2012001100017
  7. Friedrich B, Koster L, Jaroni J. Intracranial microhemorrhage following Morphine poisoning identical to "High Altitude Cerebral Edema." Rofo 2013;185:485-486 https://doi.org/10.1055/s-0032-1330430
  8. Banks JL, Marotta CA. Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 2007;38:1091-1096 https://doi.org/10.1161/01.STR.0000258355.23810.c6
  9. Das AS, Regenhardt RW, Vernooij MW, Blacker D, Charidimou A, Viswanathan A. Asymptomatic cerebral small vessel disease: insights from population-based studies. J Stroke 2019;21:121-138 https://doi.org/10.5853/jos.2018.03608
  10. Moody DM, Bell MA, Challa VR. The corpus callosum, a unique white-matter tract: anatomic features that may explain sparing in Binswanger disease and resistance to flow of fluid masses. AJNR Am J Neuroradiol 1988;9:1051-1059
  11. Huang BY, Castillo M. Hypoxic-ischemic brain injury: imaging findings from birth to adulthood. Radiographics 2008;28:417-439 https://doi.org/10.1148/rg.282075066
  12. Poels MM, Vernooij MW, Ikram MA, Hofman A, Krestin GP, Van der Lugt A, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke 2010;41:S103-S106 https://doi.org/10.1161/STROKEAHA.110.595181
  13. Ture U, Ya,sargil MG, Krisht AF. The arteries of the corpus callosum: a microsurgical anatomic study. Neurosurgery 1996;39:1075-1084 https://doi.org/10.1097/00006123-199612000-00001
  14. Viswanathan A, Chabriat H. Cerebral microhemorrhage. Stroke 2006;37:550-555 https://doi.org/10.1161/01.STR.0000199847.96188.12
  15. Tsushima Y, Tanizaki Y, Aoki J, Endo K. MR detection of microhemorrhages in neurologically healthy adults. Neuroradiology 2002;44:31-36 https://doi.org/10.1007/s002340100649
  16. Roob G, Schmidt R, Kapeller P, Lechner A, Hartung HP, Fazekas F. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology 1999;52:991-994 https://doi.org/10.1212/WNL.52.5.991
  17. Fanou EM, Coutinho JM, Shannon P, Kiehl TR, Levi MM, Wilcox ME, et al. Critical ilness-associated cerebral microbleeds. Stroke 2017;48:1085-1087 https://doi.org/10.1161/STROKEAHA.116.016289
  18. Sakabe T, Tateishi A, Miyauchi Y, Maekawa T, Matsumoto M, Tsutsui T, et al. Intracranial pressure following cardiopulmonary resuscitation. Intensive Care Med 1987;13:256-259 https://doi.org/10.1007/BF00265114
  19. Schleien CL, Koehler RC, Shaffner DH, Eberle B, Traystman RJ. Blood-brain barrier disruption after cardiopulmonary resuscitation in immature swine. Stroke 1991;22:477-483 https://doi.org/10.1161/01.STR.22.4.477
  20. Halvorsen P, Sharma HS, Basu S, Wiklund L. Neural injury after use of vasopressin and adrenaline during porcine cardiopulmonary resuscitation. Ups J Med Sci 2015;120:11-19 https://doi.org/10.3109/03009734.2015.1010665
  21. Semenas E, Sharma HS, Wiklund L. Adrenaline increases blood-brain-barrier permeability after haemorrhagic cardiac arrest in immature pigs. Acta Anaesthesiol Scand 2014;58:620-629 https://doi.org/10.1111/aas.12293
  22. Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jager HR, Barkhof F. Cerebral microbleeds: imaging and clinical significance. Radiology 2018;287:11-28 https://doi.org/10.1148/radiol.2018170803
  23. Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, et al. Incidental findings on brain MRI in the general population. N Engl J Med 2007;357:1821-1828 https://doi.org/10.1056/NEJMoa070972