DOI QR코드

DOI QR Code

Overview of Hydrolysis : A Review Part I- Hydrolysis Mechanism

  • Received : 2020.05.19
  • Accepted : 2020.06.19
  • Published : 2020.06.30

Abstract

The hydrolysis mechanisms as well as the hydrolysis measurement technique and its practical applications in material manufacturing fields are revised. This chapter, Part 1, elaborates the theoretical aspects of the hydrolysis mechanism. Acid-catalyzed and base-catalyzed hydrolysis mechanisms are reviewed. The quantitative analysis method based on the SIM technique using py-GC-MS is reviewed. Examples of hydrolysis of alkoxysilane in elastomer composites currently used in the industry and hydrolysis of amine in plastic composites are shown. Moreover, Part 2 discusses the mechanical property changes in elastomer and plastic composites after hydrolysis.

Keywords

References

  1. K. J. Kim and J. VanderKooi, "Moisture Effects on TESPDSilica/CB/SBR Compounds", Rubber Chem. Technol., 78, 84 (2005). https://doi.org/10.5254/1.3547875
  2. B. Arkles, J. R. Steinmetz, J. Zazyczny, and P. Metha, in: "Silanes and other coupling agents", K. L. Mittal, Eds., VSP, Utrechi (1992) p. 93.
  3. U. Goral and A. Hunsche, "Advanced investigations into the silica/silane reaction system", Soc. Rubber Ind., 71, 549 (1998). https://doi.org/10.2324/gomu.71.549
  4. U. Goral, A. Hunsche, A. Muller, and H. G. Koban, "Investigations into the Silica/Silane Reaction System", Rubber Chem. Technol., 70, 608 (1997). https://doi.org/10.5254/1.3538447
  5. A. Hunsche, U. Goral, A. Muller, M. Knaack, T. Gobel, and Hurth, "Investigations concerning the reaction silica/organosilane and organosilane/polymer. Part 1: reaction mechanism and reaction model for silica/organosilane", Kautsch. Gummi Kunstat. 50, 881 (1997).
  6. K. L. Mittal, Eds., Silane Coupling Agents, VSP, Utrechi (1992).
  7. K. J. McNeil, J. A. DiCapri, D. A. Walsh, and R. F. Pratt, "Kinetics and mechanism of hydrolysis of a silicate triester, tris(2-methoxyethoxy)phenylsilane", J. Am. Chem. Soc., 102, 1859 (1980). https://doi.org/10.1021/ja00526a015
  8. M. G. Vorokonov, V. P. Meleshkevisk, and Y. A. Yuzekelvski, "The Siloxane Bond", Plenum Press, New York (1978) p. 375-380.
  9. E. R. Pohl, "Society of the plastics industry", Proc. 38th Annu. Tech. Conf. Reinforced Plastics/Composites Inst. Section 4-B (1983).
  10. R. W. Taft, Jr., "Steric effects in Organic Chemistry", M. S. Newman, Eds., John Wiley, New York (1956), Ch. 13.
  11. D. F. DeTar, "Effects of alkyl groups on rates of acyl-transfer reactions", J. Org. Chem., 45, 5166 (1980). https://doi.org/10.1021/jo01313a029
  12. W. P. Jencks and K. Salvesen, "Equilibrium deuterium isotope effects on the ionization of thiol acids", J. Am. Chem. Soc., 93, 4433 (1971). https://doi.org/10.1021/ja00747a016
  13. M. Prassas and L. L. Hench, "Ultrastructure Processing of Ceramics", L. Hench and D. Ulrich, Eds., John Wiley, New York (1984) p. 100.
  14. K. W. Allen, in: "Silane Coupling Agents", K. L. Mittal, Eds., VSP, Utrechi (1992) p. 93.
  15. B. D. Kay and R. A. Assink, "Sol-gel kinetics: II. Chemical speciation modeling", J. Non-Cryst. Solids, 104, 112 (1988). https://doi.org/10.1016/0022-3093(88)90189-5
  16. M. J. Moore, "Mold makers make anti-dumping plea to ITC", Rubber Plast. News, June 3, 2002, p. 14.
  17. F. D. Osterholtz and E. P. Pohl, in: "Silane Coupling Agents", K. L. Mittal, Eds., VSP, Utrechi (1992) p. 93.
  18. J. Y. Lee and K. J. Kim, "MEG effects on hydrolysis of polyamide 66/glass fiber composites and mechanical property changes", Molecules, 24, 755 (2019). https://doi.org/10.3390/molecules24040755
  19. D. Forsstrom and B. Terselius, "Thermo oxidative stability of polyamide 6 films I. Mechanical and chemical characterization", Polym. Degrad. Stab., 67, 69 (2000). https://doi.org/10.1016/S0141-3910(99)00122-6
  20. J. Rohrer, Rubber World, 252, 4 (2015).
  21. W. H. Carothers and G. J. Berchet, "Studies on polymerization G and ring formation. VIII. Amids from ${\varepsilon}$-aminocaproic acid", J. Am. Chem. Soc., 52, 5289 (1930). https://doi.org/10.1021/ja01375a091
  22. W. Y. Jung and J. I. Weon, "Characterization of Thermal Degradation of Polyamide 66 Composite: Relationship between Lifetime Prediction and Activation Energy", Polymer(Korea), 36, 712 (2012).
  23. J. H. Park, W. N. Kim, I. H. Kwon, S. H. Lim, M. B. Ko, and C. R. Choe, "Effects of Processing Conditions of Injection Molding on the Microstructure of Long Fiber Reinforced Nylon Composites", Polymer(Korea), 23, 681 (1999). https://doi.org/10.1016/0032-3861(82)90051-9
  24. B. S. Yoon, D. J. Woo, M. H. Suh, and S. H. Lee, "A study on the Ternary GF/PA/PP Composites Manufactured by Using Pre-impregnated Glass Fiber", Polymer(Korea), 24, 701 (2000).
  25. B. J. Holland and J. N. Hay, "Thermo oxidative stability of polyamide 6 films I. Mechanical and chemical characterization", Polym. Int., 49, 943 (2000). https://doi.org/10.1002/1097-0126(200009)49:9<943::AID-PI400>3.0.CO;2-5
  26. C. H. Do, E. M. Pearce, and B. J. Bulkin, "FT-IR spectroscopic study on the thermal and thermal oxidative degradation of nylons", J. of Polym. Sci.: Part A: Polym. Chem., 25, 2409 (1987).
  27. U. S. Ishiaku, H. Hamada, M. Mizoguchi, W. S. Chow, and Z. A. Mohd Ishak, "The effect of ambient moisture and temperature conditions on the mechanical properties of glass fiber/carbon fiber/nylon 6 sandwich hybrid composites consisting of skin-core morphologies", Polym. Composites, 26, 52 (2005). https://doi.org/10.1002/pc.20072
  28. A. Valle's-Lluch, W. Camacho, A. Ribes-Greus, and S. Karlsson, "Microwave-assisted synthesis of new optically active poly(ester-imide)s containing N,N'-(pyromellitoyl)-bis-L-phenylalanine moieties", J. Appl. Polym. Sci., 85, 2211-2216 (2002). https://doi.org/10.1002/app.10838
  29. R. P. Singh, S. M. Desai, and G. Pathak, "Thermal decomposition kinetics of photooxidized nylon 66", J. Appl. Polym. Sci., 87, 2146 (2003). https://doi.org/10.1002/app.11589
  30. M. A. Schaffer, K. B. McAuley, E. K. Marchildon, and M. F. Cunningham, "Thermal degradation kinetics of nylon 66: Experimental study and comparison with model predictions", Macromol. React. Eng., 1, 563 (2007). https://doi.org/10.1002/mren.200700020
  31. S. V. Levchik, E. D Weil, and M. Lewin, "Thermal decomposition of aliphatic nylons", Polym. Int., 48, 532 (1999). https://doi.org/10.1002/(SICI)1097-0126(199907)48:7<532::AID-PI214>3.0.CO;2-R
  32. Z. A. Alothman, M. M. Alam, and M. Naushad, "Heavy toxic metal ion exchange kinetics: Validation of ion exchange process on composite cation exchanger nylon 6,6 Zr(IV) phosphate", J. Indus. Eng. Chem., 19, 956 (2013). https://doi.org/10.1016/j.jiec.2012.11.016
  33. W. H. Jang and J. S. Go, Korean Soc. Ind. Eng. Chem., 10, 1136 (1999).
  34. B. Y. Shin, M. H. Ha, and D. H. Han, "Morphological, rheological, and mechanical properties of polyamide 6/polypropylene blends compatibilized by electron-beam irradiation in the presence of a reactive agent", Materials, 9, 342 (2016). https://doi.org/10.3390/ma9050342
  35. B. D. Viers, Polymer Data Handbook, Oxford University Press, Oxford, 1999.
  36. R. K. Gupta, E. Kennel, K. J. Kim, 材料科學與應用進展:聚合物納米復合材料手冊(導讀版), Science Press, Beijing, 2011. ISBN: 978-7-03-032137-4 (2011).
  37. R. van Mullekom, D. Joachimi, A. Karbach, P. Persigehl, and M. De Bock, "Molding compositions and their use", U.S. Patent 20050043443 (2005).
  38. D. Joachimi, H. Schlte, W. Littek, and J. Kadelka, "Highly viscous polyamide for use in extrusion blow molding", U.S. Patent 20,030,092,822 (2003).
  39. S. M. Kim and K. J. Kim, "Effects of Moisture and Temperature on Recrystallization and Mechanical Property Improvement of PA66/GF Composite", Polymer(Korea), 39, 880 (2015). https://doi.org/10.7317/pk.2015.39.6.880
  40. L. Huang, Q. Pei, Q. Yuan, H. Li, F. Cheng, and J. Ma, "Brittle-ductile transition in PP/EPDM blends: effect of notch radius", Polymer, 44, 3125 (2003). https://doi.org/10.1016/S0032-3861(03)00205-2
  41. S. C. Tjong, W. D. Li, and R. K. Y.Li, "Impact toughening behaviour of quaternary PP/HDPE/EPDM/EP blends", Eur. Polm. J., 34, 755 (1998). https://doi.org/10.1016/S0014-3057(97)00182-1
  42. K. J. Kim, "Overview of Hydrolysis: A Review Part IIHydrolysis Application", Elast. Compos., (in print)
  43. R. P. Lattimer, "Direct analysis of polypropylene compounds by thermal desorption and pyrolysis-mass spectrometry", J. Anal. Appl. Pyrolysis, 26, 65 (1993). https://doi.org/10.1016/0165-2370(93)85019-U
  44. K. J. Kim and J. Vanderkooi, "Reactive Batch Mixing for Improved Silica-Silane Coupling", Int. Polym. Process., 19, 364 (2004). https://doi.org/10.3139/217.1844
  45. J. Y. Lee and K. J. Kim, "Measurement of degree of hydrolysis of a PA66/GF composite using a py-GC/MS analysis", Elast. Compos., 52, 59 (2017). https://doi.org/10.7473/EC.2017.52.1.59
  46. G. Montaudo and C. Puglisi, Thermal Degradation Mechanisms in Condensation Polymers, in Developments in Polymer Degradation, N. Grassie, Ed. Applied Science, London, 1987.
  47. G. Montaudo and C. Puglisi, Thermal Degradation of Condensation Polymers, in Comprehensive Polymer Science, Pergamon Press, Oxford, 1992.
  48. H.-J. Dussel, H. Rosen, and D. O. Hummel, "Feldionen- und Elektronenstoss-Massenspektrometrie von Polymeren und Copolymeren, 5. Aliphatische und aromatische Polyamide und Polyimide", Makromol. Chem., 177, 2343 (1976). https://doi.org/10.1002/macp.1976.021770811
  49. H. Ohtani, I. Nagaya, Y. Sugimura, and S. Tsuge, "Studies on thermal degradation of aliphatic polyamides by pyrolysisglass capillary chromatography", J. Anal. Appl. Pyrol., 4, 117 (1982). https://doi.org/10.1016/0165-2370(82)80003-X
  50. P. R. Hornsby, J. Wang, R. Rothon, G. Jackson, G. Wilkinson, and K. Cossick, "Thermal decomposition behaviour of polyamide fire-retardant compositions containing magnesium hydroxide filler", Polym. Degrad. Stab., 51, 235 (1996). https://doi.org/10.1016/0141-3910(95)00181-6
  51. D. H. MacKerron and R. P. Gordon, "Minor products from the pyrolysis of thin films of poly(hexamethylene adipamide)", Polym. Degrad. Stab., 12, 277 (1985). https://doi.org/10.1016/0141-3910(85)90095-3
  52. G. Montaudo and R. P. Lattimer, Mass Spectrometry of Polymers, CRC Press, Boca Raton London Washington, 2001.
  53. E. Lissi, "Entropic control of chemiluminescent reactions", J. Am. Chem. Soc., 98, 3386 (1976). https://doi.org/10.1021/ja00427a063
  54. N. Chaupart, G. Serpe, and J. Verdu, "Molecular weight distribution and mass changes during polyamide hydrolysis", Polymer, 39, 1375 (1998). https://doi.org/10.1016/S0032-3861(97)00414-X
  55. S. M. Kim and K. J. Kim, "Effects of accelerator on silica vs. carbon black filled natural rubber compounds", Polymer(Korea), 37, 269 (2013). https://doi.org/10.1016/0032-3861(96)81098-6
  56. J. L. White and K. J. Kim, Thermoplastic and Rubber Compounds Technology and Physical Chemistry, Hanser Publisher, Munich, Cincinnati (2008) ISBN-13: 978-3-446-40980-4
  57. R. K. Gupta, E. Kennel, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton, ISBN: 9780849397776, ISBN 10: 0849397774, 2009.
  58. E. P. Plueddemann, Silane Coupling Agents, Plenum Press, New York, 1982.
  59. K. J. Kim and J. VanderKooi, "Moisture Effects on Improved Hydrolysis Reaction for TESPT and TESPD-Silica Compounds", Composite Interfaces, 11, 471 (2004). https://doi.org/10.1163/1568554042722946
  60. K. J. Kim and J. VanderKooi, "Temperature Effects of Silane Coupling on Moisture Treated Silica Surface", J. Appl. Polym. Sci., 95, 623 (2005). https://doi.org/10.1002/app.21373
  61. A. S. Hashim, B. A. Zahare, Y. Ikeda, and S. K. Ohjiya, "The Effect of Bis(3-Triethoxysilylpropyl) Tetrasulfide on Silica Reinforcement of Styrene-Butadiene Rubber", Rubber Chem. Technol., 78, 289 (1998).
  62. S. M. Kim and K. J. Kim, "Hydrolysis resistance and mechanical property changes of glass fiber filled polyketone composites upon glass fiber concentration", Elast. Compos., 52, 1 (2017). https://doi.org/10.7473/EC.2017.52.1.1
  63. M. H. Cohen and D. Turnbull, "Molecular Transport in Liquids and Glasses", J. Chem. Phys., 31, 1164 (1959). https://doi.org/10.1063/1.1730566
  64. C. A. Kumins and T. K. Kwei, Free volume and other Theories, in Diffusion in polymers edited by J. Crank and G.S Park, 1968.
  65. P. Moy and F. E. Karasz, "Epoxy-water interactions", Polym. Eng. Sci., 20, 315 (1980). https://doi.org/10.1002/pen.760200417
  66. I. Merdas, F. Thominette, A. Tcharkhtchi, and J. Verdu, "Factors governing water absorption by composite matrices", Compos. Sci. Technol., 62, 487 (2002). https://doi.org/10.1016/S0266-3538(01)00138-5
  67. I. Merdas, F. Thominette, A. Tcharkhtchi, and J. Verdu, Compos. Sci. Technol., 62, 487 (2002). https://doi.org/10.1016/S0266-3538(01)00138-5
  68. R. Puffr and J. Sebenda, "On the structure and properties of polyamides. XXVII. The mechanism of water sorption in polyamides", J. Polym. Sci. Part C Polym. Symp., 16, 79 (1967). https://doi.org/10.1002/polc.5070160109
  69. L. Razumovskii, V. Markin, and G. Y. Zaikov, "Sorption of water by aliphatic polyamides. Review", Polym. Sci. USSR, 27, 751 (1985). https://doi.org/10.1016/0032-3950(85)90411-3
  70. X. Colin and J. Verdu, Humid Ageing of Organic Matrix Composites, in Durability of Composites in a Marine Environment, vol. 208, P. Davies and Y. D. S. Rajapakse, Eds. Dordrecht: Springer Netherlands, 2014.
  71. H. H. G. Jellinek and S. R. Dunkle, Degradation and Stabilization of Polymers, Elsevier, New York, 1983.
  72. N. Sombatsompop and K. Chaochanchaikul, "Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly(vinyl chloride)/wood sawdust composites", Polym. Int., 53, 1210 (2004). https://doi.org/10.1002/pi.1535
  73. H. K. Reimschuessel, "Relationships on the effect of water on glass transition temperature and young's modulus of nylon 6", J. Polym. Sci. Polym. Chem. Ed., 16, 1229 (1978). https://doi.org/10.1002/pol.1978.170160606
  74. M. Akay, "Moisture absorption and its influence on the tensile properties of glass-fibre reinforced polyamide 6,6", Polym. Polym. Compos., 2, 349 (1994).
  75. B. Jacques, M. Werth, I. Merdas, F. Thominette, and J. Verdu, "Hydrolytic ageing of polyamide 11. 1. Hydrolysis kinetics in water", Polymer, 43, 6439 (2002). https://doi.org/10.1016/S0032-3861(02)00583-9
  76. J. L. Thomason, "Structure-property relationships in glass-reinforced polyamide, Part 3: Effects of hydrolysis ageing on the dimensional stability and performance of short glass-fiber-reinforced polyamide 66", Polym. Compos., 28, 344 (2007). https://doi.org/10.1002/pc.20312
  77. M. Kohan, Nylon Plastics Handbook, Hanser/Gardner, New York, 1995.
  78. A. Lasagabaster, M. J. Abad, L. Barral, and A. Ares, "FTIR study on the nature of water sorbed in polypropylene (PP)/ethylene alcohol vinyl (EVOH) films", Eur. Polym. J., 42, 3121 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.029
  79. E. S. Goncalves, L. Poulsen, and P. R. Ogilby, "Mechanism of the temperature-dependent degradation of polyamide 66 films exposed to water", Polym. Degrad. Stab., 92, 1977 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.08.007
  80. D. H. Mackerron and R. P. Gordon, "Minor products from the pyrolysis of thin films of poly(hexamethylene adipamide)", Polym. Degrad. Stab., 12, 277 (1985). https://doi.org/10.1016/0141-3910(85)90095-3
  81. J. L. Thomason, "The influence of fibre length, diameter and concentration on the impact performance of long glass-fibre reinforced polyamide 6,6", Compos. Part A-Appl. Sci. Manuf., 40, 114 (2009). https://doi.org/10.1016/j.compositesa.2008.10.013