• Title/Summary/Keyword: hydrolysis mechanism

Search Result 240, Processing Time 0.027 seconds

Overview of Hydrolysis : A Review Part I- Hydrolysis Mechanism

  • Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.128-136
    • /
    • 2020
  • The hydrolysis mechanisms as well as the hydrolysis measurement technique and its practical applications in material manufacturing fields are revised. This chapter, Part 1, elaborates the theoretical aspects of the hydrolysis mechanism. Acid-catalyzed and base-catalyzed hydrolysis mechanisms are reviewed. The quantitative analysis method based on the SIM technique using py-GC-MS is reviewed. Examples of hydrolysis of alkoxysilane in elastomer composites currently used in the industry and hydrolysis of amine in plastic composites are shown. Moreover, Part 2 discusses the mechanical property changes in elastomer and plastic composites after hydrolysis.

Kinetics and Mechanism of the Hydrolysis of N-(Benzenesulfonyl) benzimidoyl Chlorides

  • Kim, Tae-Rin;Kwon, Hyo-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.157-160
    • /
    • 1988
  • The rates of hydrolysis of N-(benzenesulfonyl) benzimidoyl chlorides (p-H, $p-CH_3,\;p-CH_3,\;p-NO_2\;and m-NO_2$) have been measured by UV spectrometry in 60% methanol-water at $25^{\circ}C$ and a rate equation which can be applied over wide pH range was obtained. Below pH 7.00, the substituent effect on the hydrolysis rate of N-(benzenesulfonyl) benzimidoyl chloride was found to conform to the Hammett ${\sigma}$ constant with ${\rho}$ = -0.91, whereas above pH 9.00, with ${\rho}$ = 0.94. On the basis of the rate equation obtained and the effect of solvent, substituents and salt, the following reaction mechanism were proposed; below pH 7.00, the hydrolysis of N-(benzenesulfonyl) benzimidoyl chloride proceeds by $S_N1$ mechanism, however, above pH 9.00, the hydrolysis is initiated by the attack of the hydroxide ion and in the range of pH 7.00-9.00, these two reactions occur competitively.

Lubricating Mechanism Analyzed from Wear Characteristics of Polyolester Base Oils Haying different Branch Shapes(II) (서로 다른 모양의 가지사슬을 갖는 폴리올에스터 오일의 마모특성으로부터 해석된 윤활작용 메커니즘(II))

  • 한두희;마사부미마스꼬
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.171-178
    • /
    • 2001
  • In order to elucidate the lubricating mechanism of polyolester base oils [POEs], the wear characteristics of 27 kinds of polyolester base oils including mixed POEs were investigated. Their wear results were discussed in terms of the effect of molecular structure on wear performance and compared with those of mineral oil. In addition, the adsorption ability of POEs to reduced iron and their hydrolysis rates were measured and the effect of their molecular structures on the adsorptivity and hydrolysis rate of POEs was discussed, respectively. Finally, the lubricating mechanism anlyzed from these results of wear characteristics, adsorptivity and hydrolysis rate was proposed. That is to say, POEs are firstly adsorbed to friction surface and decomposed by hydrolysis or thermal degradation. Fatty acids obtained by degradation of POEs form adsorption film on friction surface. The larger become cohesive ability among fatty acid molecules in the adsorption film, the better gets the wear performance of POEs.

Kinetics and Mechanism for Alkaline Hydrolysis of Dinitrothiophene Disperse Dye(C. I. Disperse Green 9) (디니트로티오펜계 분산염료인 C. I. Disperse Green 9의 알칼리 가수분해 반응속도 및 반응메카니즘)

  • Park, Geon-Yong;Kim, Jae-Hyoun
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.18-25
    • /
    • 2007
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Green 9(G-9) of dinitrothiophene disperse dye were investigated. As soon as G-9 contacted with alkali, instant and continuous decreases of color strength of G-9 followed with increasing time. The hydrolysis rate of G-9 increased with increasing alkali, and it was found that alkali appeared first order dependence. The observed rate constants obtained from hydrolysis of various amount of dye were similar values, and calculation of initial rates showed that G-9 hydrolyzed by first order reaction for dye. Therefore it was confirmed that the overall reaction was second order, $SN_2$ of nucleophilic substitution reaction. Increasing temperature enhanced the hydrolysis of G-9. From the results of hydrolysis performed at various temperatures, it was obtained that activation energy(Ea) was 12.6 kcal/mole, enthalpy of reaction(${\triangle}H$) was 12.0 kcal/mole, and entropy of reaction(${\triangle}S$) was $29.8J/mol{\cdot}K$.

Acetylcholinesterase(AChE)-Catalyzed Hydrolysis of Long-Chain Thiocholine Esters: Shift to a New Chemical Mechanism

  • Jung, Dai-Il;Shin, Young-Ju;Lee, Eun-Seok;Moon, Tae-sung;Yoon, Chang-No;Lee, Bong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthiocholine(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. [Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477- 10482] The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.

QM/MM-MD Simulation을 통한 수용액 상에서의 Formamide Hydrolysis Mechanism 연구

  • Baek, Yong-Su;Choe, Cheol-Ho
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.141-155
    • /
    • 2014
  • Peptide bond hydrolysis는 세포 내외의 생화학반응에 있어서 핵심이다. 하지만 amide Hydrolysis Mechanism은 아직 명확하게 규명되지 않았다. pH가 중성인 물에서의 비 촉매 가수분해가 발생하는 몇몇 실험적 증거가 있지만, 해당 반응 매커니즘은 4 가지(non-assisted concerted, non-assisted step-wise, assisted concerted, assisted step-wise)로 여전히 논란이 있다. 이번 연구에서는, Formamide의 가능한 Hydrolysis Mechanism을 자세히 연구해보고자 한다. 먼저, Ab-initio 계산을 통해 4가지 반응 메커니즘의 다시 한번 확인하고, quantum chemical calculations과 quantum mechanical molecular dynamic이 결합된 (QMMD) simulation을 통하여 water solvent에서의 반응 메커니즘의 에너지관계를 규명하였다. 결론적으로 아직 계산이 끝나지 않은 supported concerted mechanism을 제외한 모든 계산에서 non-supported, supported 두 system 모두에서 step-wise가 일어나기 쉬웠고, non-supported 보다 supported mechanism이 선호됨을 보였다. Intermediate인 amino-gem-diol의 수용액 상에서 안정화 또한 나타났다. 이는 Ab-initio 계산만 통해서는 정확하게 산출할 수 없는 엔트로피의 영향을 잘 보여준다.

  • PDF

A Study on the Kinetics and Mechanism of Hydrolysis of N-tert-Butyl-${\alpha}$-Phenylnitrone Derivatives (N-tert-Butyl-${\alpha}$-Phenylnitrone 유도체의 가수분해 반응메카니즘과 반응속도론적 연구)

  • Gwak, Chun-Geun;Lee, Kwang-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 1998
  • The rate constants of hydrolysis of N-tert-butyl-${\alpha}$-phenylnitrone and its derivatives have been determined by UV spectrophotometry at $25^{\circ}C$ and a rate equation which can be applied over a wide pH range was obtained. On the basis of rate equations derived and judging from the hydrolysis products obtained and general base and substituent effects, plausible mechanism of hydrolysis in various pH range have been proposed. Below pH 4.5, the hydrolysis was initiated by the protonation and followed by the addition of water to ${\alpha}-carbon$. Above pH 10.0, the hydrolysis was proceeded by the addition of hydroxides ion to ${\alpha}-carbon$. In the range of 4.5${\sim}$10.0 the addition of water to nitrone was rate controlling step.

Kinetics and Mechanism of the Hydrolysis of ${\alpha}$, N-Diphenylnitrone

  • Tae-Rin Kim;Kwang-Il Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.273-276
    • /
    • 1991
  • The rate constants of hydrolysis of ${\alpha}$, N-diphenylnitrone and its derivatives have been determined by UV spectrophotometry from pH 2.0 to 13.5, and a rate equation which can be applied over a wide pH range was obtained. On the basis of rate equation, hydrolysis product, and general base and substituent effects, a plausible mechanism of hydrolysis has been proposed: Below pH 5, the hydrolysis was initiated by the protonation and followed by the addition of water to ${\alpha}$-carbon. However, above pH 11, the hydrolysis was proceeded by the addition of hydroxide ion to ${\alpha}$-carbon. In the range of pH 5-11, the addition of water to nitrone is rate controlling step.

Mechanism of the Hydrolysis of 2-Phenyl-4H,5H,6H-3-methyl-3-thiazinium Perchlorate Derivatives

  • 김태린;이소영;변상용;김주창;한만소
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1213-1217
    • /
    • 1999
  • Hydrolysis reactions of 2-phenyl-4H,5H,6H-3-methyl-3-thiazinium perchlorate (PTP) and its derivatives at various pH have been investigated kinetically. The hydrolysis is quantitative, producing N-3-mercaptopropyl-N-methylbenzamide as the only product in the all pH ranges. The observed rate of hydrolysis of PTP was always of the first-order. For hydrolysis from PTP, Hammett ρvalues were 0.53, 0.84 and 1.13 for pH 5.0, 8.0, and 10.0, respectively. Bronsted βvalue was 0.53 for general base catalysis. This reaction is catalyzed by general w acetate concentration. However, as the amount of base becomes larger, the rate of hydrolysis reaction approaches the limiting values. The plot of log k vs. pH shows that the rate constants (kt) are two different regions in the profile; one part is directly proportional to hydroxide ion concentration and the other is not. On the bases of these result, the plausible hydrolysis mechanism and a reaction equation were proposed: Below pH 4.5, the hydrolysis was initiated by the addition of water to α-carbon. Above pH 9.0, the hydrolysis was proceeded by the addition of hydroxide ion to α-carbon. However, in the range of pH 4.5-8.0, these two reactions occured competitively.

Overview of Hydrolysis : A Review Part II- Hydrolysis Application

  • Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Part 1 provides a theoretical introduction of the hydrolysis mechanism, while Part 2 introduces other types of reaction mechanisms after hydrolysis in elastomer and PA66 composites. We reviewed the condensation reaction, which occurs after hydrolysis in bi-functional alkoxy silane (TESPD & TESPT), and investigated its effects on the mechanical properties of the composites. We also reviewed activators such as zinc soap, which enhances the mechanical properties of silica-silane-filled elastomer composites. The interaction parameter of silica-silane-filled elastomer composites [αC (alpha C)] were also discussed. The effects of hydrolysis on the mechanical property changes in plastic composites were compared and reviewed.