DOI QR코드

DOI QR Code

Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber

  • Received : 2020.03.17
  • Accepted : 2020.05.29
  • Published : 2020.06.25

Abstract

Multi-Walled Carbon nanotubes (MWCNT) coupled with Silicone Rubber (SR) can represent applicable strain sensors with accessible materials, which result in good stretchability and great sensitivity. Employing these materials and given the fact that the combination of these two has been addressed in few studies, this study is trying to represent a low-cost, durable and stretchable strain sensor that can perform excellently in a high number of repeated cycles. Great stability was observed during the cyclic test after 2000 cycles. Ultrahigh sensitivity (GF>1227) along with good extensibility (ε>120%) was observed while testing the sensor at different strain rates and the various number of cycles. Further investigation is dedicated to sensor performance in the detection of human body movements. Not only the sensor performance in detecting the small strains like the vibrations on the throat was tested, but also the larger strains as observed in extension/bending of the muscle joints like knee were monitored and recorded. Bearing in mind the applicability and low-cost features, this sensor may become promising in skin-mountable devices to detect the human body motions.

Keywords

References

  1. Amini, A., Mohammadimehr, M. and Faraji, A. R. (2019), "Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator", Steel Compos. Struct., j., 32(5), 671-686. https://doi.org/10.12989/scs.2019.32.5.671.
  2. Amjadi, M., Yoon, Y.J. and Park, I. (2015), "Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-ecoflex nanocomposites", Nanotechnology., 26(37), 375501. https://doi.org/10.1088/0957-4484/26/37/375501.
  3. Aziz, S., Jung, K. C., and Chang, S. H. (2019), "Stretchable Strain Sensor Based on a Nanocomposite of Zinc Stannate Nanocubes and Silver Nanowires", Compos. Struct., 224, 111005. https://doi.org/10.1016/j.compstruct.2019.111005.
  4. Azizkhani, M.B., Rastgordani, S., Anaraki, A.P., Kadkhodapour, J., and Hadavand, B.S. (2020), "Highly sensitive and stretchable strain sensors based on chopped carbon fibers sandwiched between silicone rubber layers for human motion detections", J. Compos. Mater., 54(3), 423-434. https://doi.org/10.1177/0021998319855758.
  5. Azizkhani, M.B., Kadkhodapour, J., Rastgordani, S., Anaraki, A. P. and Hadavand, B.S. (2019), "Highly sensitive, stretchable chopped carbon fiber/silicon rubber based sensors for human joint motion detection", Fibers Polym., 20(1), 35-44. https://doi.org/10.1007/s12221-019-8662-0.
  6. Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct., 31(2), 113-123. https://doi.org/10.12989/scs.2019.31.2.113.
  7. Cao, X., Wei, X., Li, G., Hu, C., Dai, K., Guo, J., Zheng, G., Liu, C., Shen, C. and Guo, Z. (2017), "Strain Sensing Behaviors of Epoxy Nanocomposites with Carbon Nanotubes under Cyclic Deformation", Polymer (United Kingdom)., 112, 1-9. https://doi.org/10.1016/j.polymer.2017.01.068.
  8. Chen, J., Zhu, Y. and Jiang, W. (2020), "A stretchable and transparent strain sensor based on sandwich-like PDMS / CNTs / PDMS composite containing an ultrathin conductive CNT layer", Compos. Sci. Tech., 186, 107938. https://doi.org/10.1016/j.compscitech.2019.107938.
  9. Chen, Y., Wang, L., Wu, Z., Luo, J., Li, B., Huang, X., Xue, H. and Gao, J. (2019), "Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors", Compos. Part B Eng., 176, 107358. https://doi.org/10.1016/j.compositesb.2019.107358.
  10. Cheng, X., Bao, C., Wang, X. and Dong, W. (2019), "Stretchable strain sensor based on conductive polymer for structural health monitoring of high-speed train head", Proc. Inst. Mech. Eng. Part L J. Mater. Des., 1464420719896599. https://doi.org/10.1177/1464420719896599.
  11. Cheng, Y., Wang, R., Sun, J. and Gao, L. (2015), "A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion", Adv. Mater., 27(45), 7365-7371. https://doi.org/10.1002/adma.201503558.
  12. Christ, J.F., Aliheidari, N., Pötschke, P. and Ameli, A. (2019), "Bidirectional and stretchable piezoresistive sensors enabled by multimaterial 3D printing of carbon nanotube/thermoplastic polyurethane nanocomposites", Polymers., 11(1), 11. https://doi.org/10.3390/polym11010011.
  13. Chu, J., Marsden, A.J., Young, R.J. and Bissett, M.A. (2019), "Graphene-Based Materials as Strain Sensors in Glass Fiber / Epoxy Model Composites", Research-article. ACS Appl. Mater. Interfaces., 11(34), 31338-31345. https://doi.org/10.1021/acsami.9b09862.
  14. Di, J., Yao, S., Ye, Y., Cui, Z., Yu, J., Ghosh, T.K. and Gu, Z. (2015), "Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots", ACS Nano., 9(9), 9407-9415. https://doi.org/10.1021/acsnano.5b03975.
  15. Ding, Y., Xu, W., Wang, W., Fong, H. and Zhu, Z. (2017), "Scalable and facile preparation of highly stretchable electrospun PEDOT:PSS@PU fibrous nonwovens toward wearable conductive textile applications", ACS Appl. Mater. Interfaces., 9(35), 30014-30023. https://doi.org/10.1021/acsami.7b06726.
  16. Eutionnat-Diffo, P.A., Chen, Y., Guan, J., Cayla, A., Campagne, C., Zeng, X. and Nierstrasz, V. (2019), "Stress, strain and deformation of poly-lactic acid filament deposited onto polyethylene terephthalate woven fabric through 3D printing process", Sci. Rep., 9(1), 1-18. https://doi.org/10.1038/s41598-019-50832-7.
  17. Fernandez‐Toribio, J.C., Iniguez‐Rabago, A., Vila, J., Gonzalez, C., Ridruejo, A., and Vilatela, J.J. (2016), "A Composite Fabrication Sensor Based on Electrochemical Doping of Carbon Nanotube Yarns", Adv. Funct. Mater., 26(39), 7139-7147. https://doi.org/10.1002/adfm.201602949.
  18. Fu, X., Ramos, M., Al-Jumaily, A.M., Meshkinzar, A. and Huang, X. (2019), "Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance", J. Mater. Sci., 54(3), 2170-80. https://doi.org/10.1007/s10853-018-2954-4.
  19. Gao, F., Qiu, Y., Wei, S., Yang, H., Zhang, J. and Hu, P. (2019), "Tunneling types transition graphene nanoparticle strain sensors with modulated sensitivity through tunneling types transition", Nanotechnology., 30(42), 425501. https://doi.org/10.1088/1361-6528/ab2d64.
  20. Ghiasi, R., and Ghasemi, M.R. (2018), "An intelligent health monitoring method for processing data collected from the sensor network of structure", Steel Compos. Struct., 29(6), 703-716. https://doi.org/10.12989/scs.2018.29.6.703
  21. Gong, X.X., Fei, G.T., Fu, W.B., Fang, M., Gao, X.D., Zhong, B. N. and De Zhang, L. (2017), "Flexible strain sensor with high performance based on PANI/PDMS films", Organ. Electron., 47, 51-56. https://doi.org/10.1016/j.orgel.2017.05.001.
  22. Hajmohammad, M.H., Azizkhani, M.B.,and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026.
  23. He, Y., Gui, Q., Wang, Y., Wang, Z., Liao, S. and Wang, Y. (2018), "A polypyrrole elastomer based on confined polymerization in a host polymer network for highly stretchable temperature and strain sensors", Small., 14(19), 1800394. https://doi.org/10.1002/smll.201800394.
  24. He, Z., Zhou, G., Byun, J.H., Lee, S.K., Um, M.K., Park, B., Kim, T., Lee, S.B. and Chou, T.W. (2019), "Highly stretchable multi-walled carbon nanotube/thermoplastic Polyurethane Composite Fibers for Ultrasensitive, Wearable Strain Sensors", Nanoscale., 11(13), 5884-5890. https://doi.org/10.1039/C9NR01005J.
  25. Hempel, M., Nezich, D., Kong, J., and Hofmann, M. (2012), "A Novel Class of Strain Gauges Based on Layered Percolative Films of 2D Materials", Nano Lett., 12(11), 5714-5718. https://doi.org/10.1021/nl302959a.
  26. Huang, J., Li, D., Zhao, M., Mensah, A., Lv, P., Tian, X., Huang, F., Ke, H. and Wei, Q. (2019), "Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection", Adv. Electron. Mater., 5(6), 1900241. https://doi.org/10.1002/aelm.201900241.
  27. Hwang, B.U., Lee, J.H., Trung, T.Q., Roh, E., Kim, D.I., Kim, S. W., and Lee, N.E. (2015), "Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities", ACS Nano., 9(9), 8801-8810. https://doi.org/10.1021/acsnano.5b01835.
  28. Jiang, D., Wang, Y., Li, B., Sun, C., Wu, Z., Yan, H., Xing, L., Qi, S., Li, Y., Liu, H. and Xie, W. (2019), "Flexible sandwich structural strain sensor based on silver nanowires decorated with self-Healing substrate", Macromolecular Mater. Eng., 304(7), 1900074. https://doi.org/10.1002/mame.201900074.
  29. Kaisti, M., Panula, T., Leppanen, J., Punkkinen, R., Tadi, M.J., Vasankari, T., Jaakkola, S., Kiviniemi, T., Airaksinen, J., Kostiainen, P. and Meriheina, U. (2019), "Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation", NPJ digit. med., 2(1), 1-10. https://doi.org/10.1038/s41746-019-0117-x.
  30. Koziol, M., Toron, B., Szperlich, P. and Jesionek, M. (2019), "Fabrication of a piezoelectric strain sensor based on SbSI nanowires as a structural element of a FRP laminate", Composites Part B., 157, 58-65. https://doi.org/10.1016/j.compositesb.2018.08.105.
  31. Larimi, S. R., Nejad, H. R., Oyatsi, M., O'Brien, A., Hoorfar, M., and Najjaran, H. (2018), "Low-cost ultra-stretchable strain sensors for monitoring human motion and bio-signals", Sensors Actuat. A Phys., 271, 182-191. https://doi.org/10.1016/j.sna.2018.01.028.
  32. Li, B., Luo, J., Huang, X., Lin, L., Wang, L., Hu, M. and Mai, Y. W. (2020), "A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring", Compos. Part B Eng., 181, 107580. https://doi.org/10.1016/j.compositesb.2019.107580.
  33. Li, X., Hua, T. and Xu, B. (2017), "Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core", Carbon., 118, 686-698. https://doi.org/10.1016/j.carbon.2017.04.002.
  34. Li, Y., Luo, S., Yang, M.C., Liang, R. and Zeng, C. (2016), "Poisson ratio and piezoresistive sensing: A new route to high-performance 3D flexible and stretchable sensors of multimodal sensing capability", Adv. Funct. Mater., 26(17), 2900-2908. https://doi.org/10.1002/adfm.201505070.
  35. Li, Y.Q., Huang, P., Zhu, W.B., Fu, S.Y., Hu, N. and Liao, K. (2017), "Flexible wire-shaped strain sensor from cotton thread for human health and motion detection", Sci. Rep., 7(1), 1-7. https://doi.org/10.1038/srep45013.
  36. Liu, H., Gao, H. and Hu, G. (2019), "Highly sensitive natural rubber/pristine graphene strain sensor prepared by a simple method", Compos. Part B Eng., 171, 138-145. https://doi.org/10.1016/j.compositesb.2019.04.032.
  37. Liu, Z.F., Fang, S., Moura, F.A., Ding, J.N., Jiang, N., Di, J., Zhang, M., Lepró, X., Galvao, D.S., Haines, C.S. and Yuan, N.Y. (2015), "Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles", Science., 349(6246), 400-404. https://doi.org/10.1126/science.aaa7952.
  38. Lu, S., Ma, J., Ma, K., Wang, X., Wang, S., Yang, X. and Tang, H. (2019), "Highly sensitive graphene platelets and multi-walled carbon nanotube-based flexible strain sensor for monitoring human joint bending", Appl. Phys. A Mater. Sci. Process., 125 (7), 471. https://doi.org/10.1007/s00339-019-2765-8.
  39. Lu, Y., Jiang, J., Yoon, S., Kim, K.S., Kim, J.H., Park, S., Kim, S.H. and Piao, L. (2018), "High-performance stretchable conductive composite fibers from surface-modified silver nanowires and thermoplastic polyurethane by wet spinning", ACS Appl. Mater. Interfaces., 10(2), 2093-2104. https://doi.org/10.1021/acsami.7b16022.
  40. Mai, H., Mutlu, R., Tawk, C., Alici, G. and Sencadas, V. (2019), "Ultra-stretchable MWCNT-ecoflex piezoresistive sensors for human motion detection applications", Compos. Sci. Tech., 173, 118-124. https://doi.org/10.1016/j.compscitech.2019.02.001.
  41. Min, S.H., Lee, G.Y. and Ahn, S.H. (2019), "Direct printing of highly sensitive, stretchable, and durable strain sensor based on silver nanoparticles/multi-walled carbon nanotubes Composites", Compos. Part B Eng., 161, 395-401. https://doi.org/10.1016/j.compositesb.2018.12.107.
  42. Montazerian, H., Rashidi, A., Dalili, A., Najjaran, H., Milani, A.S., and Hoorfar, M. (2019), "Graphene-coated spandex sensors embedded into silicone sheath for composites health monitoring and wearable applications", Small., 15(17), 1804991. https://doi.org/10.1002/smll.201804991.
  43. Narongthong, J., Le, H.H., Das, A., Sirisinha, C. and WieBner, S. (2019), "Ionic liquid enabled electrical-strain tuning capability of carbon black based conductive polymer composites for small-strain sensors and stretchable conductors", Compos. Sci. Technol., 174, 202-211. https://doi.org/10.1016/j.compscitech.2019.03.002.
  44. Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Shi, Y., Dauskardt, R. and Bao, Z. (2014), "An ultra-sensitive resistive pressure sensor based on hollow-Sphere microstructure induced elasticity in conducting polymer film", Nat. Commun, 5(1), 1-8. https://doi.org/10.1038/ncomms4002.
  45. Qin, Y., Qu, M., Pan, Y., Zhang, C. and Schubert, D.W. (2020), "Fabrication, characterization and modelling of triple hierarchic PET / CB / TPU composite fibres for strain sensing", Compos. Part A., 129, 105724. https://doi.org/10.1016/j.compositesa.2019.105724.
  46. Ren, M., Zhou, Y., Wang, Y., Zheng, G., Dai, K., Liu, C. and Shen, C. (2019), "Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure", Chem. Eng. j., 360, 762-777. https://doi.org/10.1016/j.cej.2018.12.025.
  47. Ren, Z., Zheng, Q., Wang, H., Guo, H., Miao, L., Wan, J., Xu, C., Cheng, S. and Zhang, H. (2020), "Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film", Nano Energy., 67, 104243. https://doi.org/10.1016/j.nanoen.2019.104243.
  48. Rostami, R., Mohamadimehr, M. and Rahaghi, M.I. (2019), "Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator", Steel Compos. Struct., 32(2), 225-237. https://doi.org/10.12989/scs.2019.32.2.225.
  49. Sanli, A. and Kanoun, O. (2020), "Electrical impedance analysis of carbon nanotube / epoxy nanocomposite-based Piezoresistive strain sensors under uniaxial cyclic static tensile loading", J. Compos. Mater., 54(6), 845-855 https://doi.org/10.1177/0021998319870592.
  50. Sapra, G., Sharma, M., Vig, R. and Sharma, S. (2019), "Temperature-robust active vibration controller using MWCNT / epoxy strain sensor and PZT-5H actuator", J. Electronic. Mater., 48(6), 3991-399. https://doi.org/10.1007/s11664-019-07159-w.
  51. Shang, Y., Wang, Y., Li, S., Hua, C., Zou, M. and Cao, A. (2017), "High-strength carbon nanotube fibers by twist-induced self-strengthening", Carbon., 119, 47-55. https://doi.org/10.1016/j.carbon.2017.03.101.
  52. Shirkavand B.H., Javid, K.M. and Gharagozlou, M. (2013), "Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite", Mater. Des., 50, 62-67. https://doi.org/10.1016/j.matdes.2013.02.039.
  53. Steck, D., Qu, J., Kordmahale, S.B., Tscharnuter, D., Muliana, A., and Kameoka, J. (2019), "Mechanical responses of ecoflex silicone rubber: compressible and incompressible behaviors", J. Appl. Polym. Sci., 136(5), 47025. https://doi.org/10.1002/app.47025.
  54. Taherkhani, B., Azizkhani, M.B., Kadkhodapour, J., Anaraki, A.P., and Rastgordani, S. (2020), "Highly sensitive, piezoresistive, silicone/carbon fiber-based auxetic sensor for low strain values", Sensor. Actuat. A Phys., 111939. https://doi.org/10.1016/j.sna.2020.111939.
  55. Wang, L., Chen, Y., Lin, L., Wang, H., Huang, X., Xue, H. and Gao, J. (2019), "Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite", Chem. Eng. J., 362, 89-98. https://doi.org/10.1016/j.cej.2019.01.014.
  56. Wang, S., Zhang, X., Wu, X. and Lu, C. (2016), "Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly", Soft Matter., 12(3), 845-852. https://doi.org/10.1039/c5sm01958c.
  57. Wang, T., Yang, H., Qi, D., Liu, Z., Cai, P., Zhang, H. and Chen, X. (2018), "Mechano-Based Transductive Sensing for Wearable Healthcare", Small., 14(11), 1702933. https://doi.org/10.1002/smll.201702933.
  58. Wang, X., Li, J., Song, H., Huang, H. and Gou, J. (2018), "Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity", ACS Appl. Mater. Interfaces., 10(8), 7371-7380. https://doi.org/10.1021/acsami.7b17766.
  59. Yang, Y., Shi, L., Cao, Z., Wang, R. and Sun, J. (2019), "Strain sensors with a high sensitivity and a wide sensing range based on a Ti 3 C 2 T x ( MXene ) nanoparticle - nanosheet hybrid network", Adv. Func. Mater., 29(14), 1807882. https://doi.org/10.1002/adfm.201807882.
  60. Yao, S., Vargas, L., Hu, X. and Zhu, Y. (2018), "A novel finger kinematic tracking method based on skin-like wearable strain sensors", IEEE Sensors J., 18(7), 3010-3015. https://doi.org/10.1109/JSEN.2018.2802421.
  61. Yao, S. and Zhu, Y. (2014), "Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires", Nanoscale., 6(4), 2345-2352 https://doi.org/10.1039/c3nr05496a.
  62. Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H. and Kolahchi, R. (2017), "Dynamic buckling of polymer-carbon nanotube- fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mater., 109963621774328. https://doi.org/10.1177/1099636217743288.
  63. Zhai, W., Xia, Q., Zhou, K., Yue, X., Ren, M., Zheng, G., Dai, K., Liu, C. and Shen, C. (2019), "Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with Ultrahigh linear range, excellent durability and oil/water separation capability", Chem. Eng. J., 372, 373-382. https://doi.org/10.1016/j.cej.2019.04.142.
  64. Zhan, P., Zhai, W., Wang, N., Wei, X., Zheng, G., Dai, K. and Shen, C. (2019), "Electrically conductive carbon black/electrospun polyamide 6/poly(Vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability", Mater. Lett., 236, 60-63. https://doi.org/10.1016/j.matlet.2018.10.068.
  65. Zhang, H., Liu, N., Shi, Y., Liu, W., Yue, Y., Wang, S., Ma, Y., Wen, L., Li, L., Long, F. and Zou, Z. (2016), "Piezoresistive sensor with high elasticity based on 3D hybrid network of sponge@CNTs@Ag NPs", ACS Appl. Mater. Interfaces., 8(34), 22374-22381. https://doi.org/10.1021/acsami.6b04971.
  66. Zhao, D., Zhang, Q., Chen, W., Yi, X., Liu, S., Wang, Q., Liu, Y., Li, J., Li, X. and Yu, H. (2017), "Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes", ACS Appl. Mater. Interfaces., 9(15), 13213-13222. https://doi.org/10.1021/acsami.7b01852.
  67. Li, Y., Zhou, B., Zheng, G., Liu, X., Li, T., Yan, C., Cheng, C., Dai, K., Liu, C., Shen, C. and Guo, Z. (2018), "Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing", J. Mater. Chem. C., 6(9), 2258-2269. https://doi.org/10.1039/c7tc04959e.

Cited by

  1. Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator vol.77, pp.2, 2021, https://doi.org/10.12989/sem.2021.77.2.167