참고문헌
- Alejano, L.R. and Alonso, E. (2005), ''Considerations of the dilatancy angle in rocks and rock masses", Int. J. Rock Mech. Min. Sci., 42(4), 481-507. https://doi.org/10.1016/j.ijrmms.2005.01.003.
- Alejano, L.R., Alonso, E., Rodriguez-Dono, A. and Fernandez-Manin, G. (2010), ''Application of the convergenceconfinement method to tunnels in rock masses exhibiting Hoek- Brown strain-softening behavior", Int. J. Rock Mech. Min. Sci., 1(47), 150-160. https://doi.org/ 10.1016/j.ijrmms.2009.07.008.
- Alejano, L.R., Rodriguez-Dono, A., Alonso, E. and Manin, G.F. (2009), ''Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behavior", Tunn. Undergr. Sp. Technol., 24(6), 689-705. https://doi.org/10.1016/j.tust.2009.07.004.
- Alonso, E., Alejano, L.R., Varas, F., Fdez-Manin, G. and Carranza-Torres, C. (2003), ''Ground response curves for rock masses exhibiting strain-softening behavior", Int. J. Numer. Anal. Meth. Geomech., 27(13), 1153-1185. https://doi.org/10.1002/nag.315.
- Brown, E.T., Bray, J.W., Ladanyi, B. and Hoek, E. (1983), ''Ground response curves for rock tunnels", J. Geotech. Eng., 109(1), 15-39. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:1(15).
- Carranza-Torres, C. (1998), ''Self-similarity analysis of the elastoplastic response of underground openings in rock and effects of practical variables", University of Minnesota, Minnesota, U.S.A.
- Carranza-Torres, C. (2004), ''Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 41(S1), 1-11. https://doi.org/10.1016/j.ijrmms.2004.03.111.
- Carranza-Torres, C. and Fairhurst, C. (1999), "The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 36(6), 777-809. https://doi.org/10.1016/S0148-9062(99)00047-9.
- Fahimifar, A. Ghadami, H. and Ahmadvand, M., (2015), "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass", Geomech. Eng., 8(3), 323-359. https://doi.org/10.12989/gae.2015.8.3.323.
- FAMA, M.E.D. (1993), Numerical Modeling of Yield Zones in Weak Rock, in Analysis and Design Methods, 49-75.
- Gonzalez-Cao, J., Varas, F., Bastante, F.G. and Alejano, L.R. (2013), ''Ground reaction curves for circular excavations in non-homogeneous, axisymmetric strain-softening rock masses", J. Rock Mech. Geotech. Eng., 5(6), 431-442. https://doi.org/10.1016/j.jrmge.2013.08.001.
- Griffiths, D.V. and Willson, S.M. (1986), ''An explicit form of the plastic matrix for a Mohr-Coulomb material", Commun. Appl. Numer. Meth., 2(5), 523-529. https://doi.org/10.1002/cnm.1630020511.
- Hoek, E. (1999), "Putting numbers to geology-an engineer's viewpoint", Quart. J. Eng. Geol. Hydrogeol., 32(1), 1-19. https://doi.org/10.1144/GSL.QJEG.1999.032.P1.01.
- Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
- Hoek, E. and Diederichs, M.S. (2006), "Empirical estimation of rock mass modulus", Int. J. Rock Mech. Min. Sci., 43(2), 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005.
- Hoek, E. and Marinos, P. (2000), ''Predicting tunnel squeezing problems in weak heterogeneous rock masses", Tunn. Tunn. Int., 32(11), 45-51.
- Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), ''Hoek-Brown failure criterion-2002 edition", Proc. NARMS-Tac, 1(1), pp.267-273. https://doi.org/10.1016/j.tust.2017.11.004.
- Jiang, H. and Xie, Y.L. (2012), ''A new three-dimensional Hoek-Brown strength criterion", Acta Mechanica Sinica, 28(2), 393-406. https://doi.org/10.1007/s10409-012-0054-2.
- Jiang, H. and Zhao, J. (2015), ''A simple three-dimensional failure criterion for rocks based on the Hoek Brown criterion", Rock Mech. Rock Eng., 48(5), 807-1819. https://doi.org/10.1007/s00603-014-0691-9.
- Lai, W.M., Rubin, D.H., Krempl, E. and Rubin, D. (2009), Introduction to Continuum Mechanics, Butterworth-Heinemann.
- Lee, Y.K. and Pietruszczak, S. (2008), ''A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass", Tunn. Undergr. Sp. Technol., 23(5), 588-599. https://doi.org/10.1016/j.tust.2007.11.002.
- Nikadat, N. and Fatehi Marji, M., (2016), "Analysis of stress distribution around tunnels by hybridized FSM and DDM considering the influences of joints parameters", Geomech. Eng., 11(2), 269-288. https://doi.org/10.12989/gae.2016.11.2.269.
- Oreste, P. (2009), "The convergence-confinement method: roles and limits in modern geomechanical tunnel design", Amer. J. Appl. Sci., 6(4), 757. https://doi.org/10.3844/ajassp.2009.757.771.
- Osguii, R. and Oreste, P. (2007), ''Convergence-control approach for rock tunnels reinforced by grouted bolts, using the homogenization concept", Geotech. Geol. Eng., 25(4), 431-440. https://doi.org/10.1007/s10706-007-9120-0.
- Panet, M. (1993), Understanding Deformations in Tunnels, in Comprehensive Rock Engineering, Pergamon Press, 1, 663-690.
- Paraskevopoulou, C. and Diederichs, M. (2018), "Analysis of time-dependent deformation in tunnels using the convergenceconfinement method", Tunn. Undergr. Sp. Technol., 71, 62-80. http://doi.org/10.1016/j.tust.2017.07.001.
- Park, K. (2017), "Simple solutions of an opening in elastic-brittle plastic rock mass by total strain and incremental approaches", Geomech. Eng., 13(4), 585-600. https://doi.org/10.12989/gae.2017.13.4.585.
- Park, K.H. and Kim, Y.J. (2006), ''Analytical solution for a circular opening in an elastic-brittle-plastic rock", Int. J. Rock Mech. Min. Sci., 43(4), 616-622. https://doi.org/10.1016/j.ijrmms.2005.11.004.
- Park, K.H., Tontavanich, B. and Lee, J.G. (2008), ''A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses", Tunn. Undergr. Sp. Technol., 23(2), 151-159. https://doi.org/10.1016/j.tust.2007.03.002.
- Potts, D.M., Zdravkovic, L. and Zdravkovic, L. (2001), Finite Element Analysis in Geotechnical Engineering: Application (Vol. 2), Thomas Telford.
- Quevedo, F. and Bernaud, D. (2018), "Parametric study of the convergence of deep tunnels with long term effects: Abacuses", Geomech. Eng., 15(4), 973-986. https://doi.org/10.12989/gae.2018.15.4.973.
- Ranjbarnia, M., Fahimifar, A. and Oreste, P. (2015), ''Analysis of non-linear strain-softening behaviour around tunnels", Proc. Inst. Civ. Eng. Geotech. Eng., 168(1), 16-30. https://doi.org/10.1680/geng.13.00144.
- Sadd, M.H. (2009), Elasticity: Theory, Applications, and Numeric, Academic Press.
- Sharan, S.K., (2003), ''Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media", Int. J. Rock Mech. Min. Sci., 40(6), 817-824. https://doi.org/10.1016/S1365-1609(03)00040-6.
- Tu, H., Qiao, C. and Han, Z. (2018), ''Elastic-brittle-plastic analysis of the radial subgrade modulus for a circular cavity based on the generalized nonlinear unified strength criterion", Tunn. Undergr. Sp. Technol., 71, 623-636. https://doi.org/10.1016/j.tust.2017.11.004.
- Wang, F. and Zou, J.F. (2018), "A simple prediction procedure of strain-softening surrounding rock for a circular opening", Geomech. Eng., 16(6), 619-626. https://doi.org/10.12989/gae.2018.16.6.619.
- Wang, Sh., Yin, X., Tang, H. and Ge, X. (2010), ''A new approach for analyzing circular tunnel in strain-softening rock mass", Int. J. Rock Mech. Min. Sci., 47(1), 170-178. https://doi.org/10.1016/j.ijrmms.2009.02.011.
- Yoo, C. (2016), "Effect of spatial characteristics of a weak zone on tunnel deformation behavior", Geomech. Eng., 11(1), 41-58. https://doi.org/10.12989/gae.2016.11.1.041.
- Zareifard, M.R. (2019), "Ground response curve of deep circular tunnel in rock mass exhibiting Hoek-Brown strain-softening behaviour considering the dead weight loading", Eur. J. Environ. Civ. Eng. https://doi.org/10.1080/19648189.2019.1632745.
- Zhuang, P.Z. and Yu, H.S. (2018), "A unified analytical solution for elastic-plastic stress analysis of a cylindrical cavity in Mohr-Coulomb materials under biaxial in situ stresses", Geotechnique, 69(4), 369-376. https://doi.org/10.1680/jgeot.17.P.281.
- Zou, J.F. and Wei, X.X. (2018), "An improved radius-incrementalapproach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling", Geomech. Eng., 16(1), 59-69. https://doi.org/10.12989/gae.2018.16.1.059.
- Zou, J.F. and Zheng, H. (2016), ''Numerical approach for strainsoftening rock with axial stress", Proc. Inst. Civ. Eng. Geotech. Eng., 169(3), 276-290. https://doi.org/10.1680/jgeen.15.00097.
- Zou, J.F., Li, C. and Wang, F. (2017), "A new procedure for ground response curve (GRC) in strain-softening surrounding rock", Comput. Geotech., 89, 81-91. https://doi.org/10.1016/j.compgeo.2017.04.009.
- Zou, J.F., Yang, T., Ling, W., Guo, W. and Huang, F. (2019), "A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass", Geomech. Eng., 18(3), 225-234. https://doi.org/10.12989/gae.2019.18.3.225.
피인용 문헌
- Deformation behavior analysis of tunnels opened in various rock mass grades conditions in China vol.26, pp.2, 2020, https://doi.org/10.12989/gae.2021.26.2.191