Acknowledgement
The authors are grateful to the supports provided by the National Natural Science Foundation of China (Grant No. 51908084) and Natural Science Foundation of Chongqing, China (Project No. cstc2019jcyj-bshX0013).
References
- Allen D.E., Onysko D.M. and Murray T.M. (1999), ATC design guide 1: minimizing floor vibration. Applied Technology Council, USA.
- Arani, A.G., Maraghi, Z.K. and Ferasatmanesh, M. (2017), "Theoretical investigation on vibration frequency of sandwich plate with PFRC core and piezomagnetic face sheets under variable in-plane load", Struct. Eng. Mech., 63(1), 65-76. https://doi.org/10.12989/sem.2017.63.1.065.
- BS 6472-1 (2008), Guide to evaluation of human exposure to vibration in buildings Part 1: Vibration sources other than blasting. British Standards Institution, United Kingdom.
- Cao, L., Liu, J.P. and Chen, Y.F. (2018), "Vibration performance of arch prestressed concrete truss girder under impulse excitation", Eng. Struct., 165, 386-395. https://doi.org/10.1016/j.engstruct.2018.03.050.
- Cao, L., Qi, H.T. and Li, J. (2018), "Experimental and numerical studies on the vibration serviceability of fanshaped prestressed concrete floor", Int. J. Distrib. Sens. N., 14(8), 1550147718795746. ttps://doi.org/10.1177/1550147718795746.
- Chopra, A.K. (1995), Dynamics of Structures Theory and Application to Earthquake Engineering (2nd Edition), A Simon & Schuster Company, USA.
- Devin, A. and Fanning, P.J. (2019), "Non-structural elements and the dynamic response of buildings: A review", Eng. Struct., 187, 242-250. https://doi.org/10.1016/j.engstruct.2019.02.044.
- Davis, B. and Avci, O. (2015), "Simplified vibration serviceability evaluation of slender monumental stairs", J. Struct. Eng., 141(11), 04015017. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001256.
- Davis, B., Liu, D. and Murray, T.M. (2014), "Simplified experimental evaluation of floors subject to walking induced vibration", J. Perform. Constr. Fac., 28(5), 04014023. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000471.
- Demartino, C., Avossa, A.M. and Ricciardelli, F. (2018), "Deterministic and probabilistic serviceability assessment of footbridge vibrations due to a single walker crossing", Shock Vib., 2018, 1917629. https://doi.org/10.1155/2018/1917629.
- Dolan J.D., Murray T.M., Johnson J.R., Runte D. and Shue B.C. (1999), "Preventing annoying wood floor vibrations", J. Struct. Eng., 125(1), 19-24. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:1(19).
- Edskar, I. and Lidelow, H. (2019), "Dynamic properties of cross-laminated timber and timber truss building systems", Eng. Struct., 186, 525-535. https://doi.org/10.1016/j.engstruct.2019.01.136.
- Ferreira, F. and Simoes, L. (2019), "Optimum design of a controlled cable-stayed footbridge subject to a running event using semiactive and passive mass dampers", J. Perform. Constr. Fac., 33(3), 04019025. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001285.
- Gaspar, C., Caetano, E., Moutinho, C. and da Silva, J.G.S. (2019), "Active human-structure interaction during jumping on floors", Struct. Control Health Monit., e2466. https://doi.org/10.1002/stc.2466.
- ISO 2631-2 (2003), Mechanical vibration and shock-evaluation of human exposure to whole-body vibration. Part 2: Vibration in buildings (1Hz to 80Hz). International Organization for Standardization, Geneva.
- Jimenez-Alonso, J.F., Saez, A., Caetano, E. and Cunha, A. (2014), "Proposal and calibration of an human-structure interation biomechanical model by the resolution of the inverse dynamic problem", Proceedings of the 9th International Conference on Structural Dynamic, EURODYN, Porto, Portugal, June.
- Jrad, H., Mars, J., Wali M. and Dammak, F. (2018), "An extended finite element method for modeling elastoplastic FGM plate-shell type structures", Struct. Eng. Mech., 68(3), 299-312. https://doi.org/10.12989/sem.2018.68.3.299.
- Liu, J.P., Cao, L. and Chen, Y. F. (2019a), "Vibration performance of composite steel-bar truss slab with steel girder", Steel Compos. Struct., 30(6), 577-589. https://doi.org/10.12989/scs.2019.30.6.577.
- Liu, J.P., Cao, L. and Chen, Y.F. (2019b), "Analytical solution for free vibration of multi-span continuous anisotropic plates by the perturbation method", Struct. Eng. Mech., 69(3), 283-291. https://doi.org/10.12989/sem.2019.69.3.283.
- Liu, J.P., Cao, L. and Chen, Y.F. (2020), "Theoretical analysis of human-structure interaction on steel-concrete composite floors", J. Eng. Mech., 2020, 146(4): 04020007. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001740.
- Mokhtari, A. and Mirdamadi, H.R. (2018), "Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: Non-transforming spectral element analysis", Appl. Math. Model., 56, 342-358. https://doi.org/10.1016/j.apm.2017.12.007.
- Murray, T.M., Allen, D.E., Ungar, E.E. and Davis, D.B. (2016), Vibrations of Steel-Framed Structural Systems Due to Human Activity (2nd Edition), American Institute of Steel Construction, Inc., Chicago, USA.
- Nguyen, T.H., Gad, E.F., Wilson, J.L. and Haritos, N. (2012), "Improving a current method for predicting walking-induced floor vibration", Steel Compos. Struct., 13(2), 139-155. https://doi.org/10.12989/scs.2012.13.2.139.
- Peng, Y.X., Chen, J. and Ding, G. (2015), "Walking load model for single footfall trace in three dimensions based on gait experiment", Struct. Eng. Mech., 54(5), 937-953. https://doi.org/10.12989/sem.2015.54.5.937.
- Qin, S.Q., Zhou, Y.L. and Kang, J.T. (2019), "Footbridge serviceability analysis: From system identification to tuned mass damper implementation", KSCE J. Civ. Eng., 23(2), 754-762. https://doi.org/10.1007/s12205-018-0985-7.
- Sa, M.F., Guerreiro, L., Gomes, A.M., Correia, J.R. and Silvestre, N. (2017), "Dynamic behaviour of a GFRP-steel hybrid pedestrian bridge in serviceability conditions. Part 1: Experimental study", Thin Wall. Struct., 117, 332-342. https://doi.org/10.1016/j.tws.2017.05.013.
- Shahabpoor, E., Pavic, A. and Racic, V. (2016), "Identification of mass-spring-damper model of walking humans", Struct., 5, 233-246. https://doi.org/10.1016/j.istruc.2015.12.001.
- Smith, A.L., Hicks, S.J. and Devine, P.J. (2009), Design of Floors for Vibration: A New Approach, The Steel Construction Institute, Ascot, Berkshire, British.
- Timoshenko,.S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, Mcgraw-Hill College, New York, USA.
- Ussher, E., Arjomandi, K., Weckendorf, J. and Smith, I. (2017), "Prediction of motion responses of cross-laminated-timber slabs", Struct., 11, 49-61. https://doi.org/10.1016/j.istruc.2017.04.007.
- Votsis, R.A., Stratford, T.J., Chryssanthopoulos, M.K. and Tantele, E.A. (2017), "Dynamic assessment of a FRP suspension footbridge through field testing and finite element modelling", Steel Compos. Struct., 23(2), 205-215. https://doi.org/10.12989/scs.2017.23.2.205.
- Wang, A.J. (2017), "Experimental studies into a new type of hybrid outrigger system with metal dampers", Struct. Eng. Mech., 64(2), 183-194. https://doi.org/10.12989/sem.2017.64.2.183.
- Wang, J.P. and Chen, J. (2017), "A comparative study on different walking load models", Struct. Eng. Mech., 63(6), 847-856. https://doi.org/10.12989/sem.2017.63.6.000.
- Wang, Q.H., Ranzi, G., Wang, Y.Y. and Geng, Y. (2016), "Long-term behaviour of simply-supported steel-bars truss slabs with recycled coarse aggregate", Constr. Build. Mater., 116, 335-346. https://doi.org/10.1016/j.conbuildmat.2016.04.150.
- Xu, L., Zhang, S.G. and Yu, C. "Determination of equivalent rigidities of cold-formed steel floor systems for vibration analysis, Part II: evaluation of the fundamental frequency", Thin Wall Struct., 132, 1-15. https://doi.org/10.1016/j.tws.2018.08.002.
- Yan, W.Y., and Lu, F.W. (2015), "Structural analysis of the steel-bars truss formwork in construction", Struct. Eng., 31(4), 206-210. https://doi.org/10.15935/j.cnki.jggcs.2015.04.029.
- Zhou, X.H., Cao, L., Chen, Y.F., Liu, J.P. and Li, J. (2016a), "Experimental and analytical studies on the vibration serviceability of pre-stressed cable RC truss floor systems", J. Sound Vib., 361, 130-147. https://doi.org/10.1016/j.jsv.2015.10.001.
- Zhou, X.H., Li, J. and Liu, J.P. (2016b), "Vibration of prestressed cable RC truss floor system due to human activity", J. Struct. Eng., 142(5), 04015170. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001447.
- Zhou, X.H., Liu, J.P., Cao, L. and Li, J. (2017), "Vibration serviceability of pre-stressed concrete floor system under human activity", Struct. Infrastruct. E., 13(8), 967-977. http://dx.doi.org/10.1080/15732479.2016.1229796.
Cited by
- Analytical evaluation of the fundamental frequency of natural vibrations of the spatial coverage vol.274, 2021, https://doi.org/10.1051/e3sconf/202127403007