DOI QR코드

DOI QR Code

다시점 RGB-D 카메라를 이용한 실시간 3차원 체적 모델의 생성

Real-time 3D Volumetric Model Generation using Multiview RGB-D Camera

  • 김경진 (광운대학교 전자재료공학과) ;
  • 박병서 (광운대학교 전자재료공학과) ;
  • 김동욱 (광운대학교 전자재료공학과) ;
  • 권순철 (광운대학교 스마트시스템학과) ;
  • 서영호 (광운대학교 전자재료공학과)
  • 투고 : 2020.03.26
  • 심사 : 2020.05.04
  • 발행 : 2020.05.30

초록

본 논문에서는 다시점 RGB-D 카메라의 포인트 클라우드 정합을 위한 수정된 최적화 알고리즘을 제안한다. 일반적으로 컴퓨터 비전 분야에서는 카메라의 위치를 정밀하게 추정하는 것은 매우 중요하다. 기존의 연구에서 제안된 3D 모델 생성 방식들은 많은 카메라 대수나 고가의 3차원 Camera를 필요로 한다. 또한 2차원 이미지를 통해 카메라 외부 파라미터를 얻는 방식들은 큰 오차를 가지고 있다. 본 논문에서는 저가의 RGB-D 카메라를 8개 사용하여 전방위 자유시점을 제공할 수 있는 3차원 포인트 클라우드 및 매쉬 모델을 생성하기 위한 정합 기법을 제안하고자 한다. RGB영상과 함께 깊이지도 기반의 함수 최적화 방식을 이용하고, 초기 파라미터를 구하지 않으면서 고품질의 3차원 모델을 생성할 수 있는 좌표 변환 파라미터를 구하는 방식을 제안한다.

In this paper, we propose a modified optimization algorithm for point cloud matching of multi-view RGB-D cameras. In general, in the computer vision field, it is very important to accurately estimate the position of the camera. The 3D model generation methods proposed in the previous research require a large number of cameras or expensive 3D cameras. Also, the methods of obtaining the external parameters of the camera through the 2D image have a large error. In this paper, we propose a matching technique for generating a 3D point cloud and mesh model that can provide omnidirectional free viewpoint using 8 low-cost RGB-D cameras. We propose a method that uses a depth map-based function optimization method with RGB images and obtains coordinate transformation parameters that can generate a high-quality 3D model without obtaining initial parameters.

키워드

참고문헌

  1. S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodeges, D. Freeman, A. Davison, A. Fitzgibbon, "KinectFusion: Real-Time Dynamic 3D Surface Reconstruction and Interaction Using a Moving Depth Camera" ISMAR, Vol. 11, No. 2011, pp. 127-136, October 2011.
  2. S. Choi, S. Park, "Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object." KIPS Transactions on Software and Data Engineering, Vol.3 No.8, pp.309-314, 2014. https://doi.org/10.3745/KTSDE.2014.3.8.309
  3. C. Gregory, W. Sang, K. David, "ICP Registration Using Invariant Features.", IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, Vol. 24, No. 1, pp. 90-102, January 2002. https://doi.org/10.1109/34.982886
  4. S. Gold, A. Rangarajan, C. Lu, S. Pappu, E. Mjolsness, "New algorithms for 2d and 3d point matching: Pose estimation and correspondence." In Pattern Recognition, Journal of KIISE, Vol. 31, pp. 1019-1031, August 1998. https://doi.org/10.1016/S0031-3203(98)80010-1
  5. S. Granger, X. Pennec. "Multi-scale em-icp: A fast and robust approach for surface registration." In ECCV, pp. 418-432, June 2002.
  6. P. David, D. DeMenthon, R. Duraiswami, H. Samet. "Simultaneous pose and correspondence determination using line features." In CVPR, pp. 424-431, June 2003.
  7. W. Zhao, D. Nister, S. Hus. "Alignment of continuous video onto 3d point clouds." PAMI, Vol. 27, pp.1305-1318, August 2005.
  8. Li, Hongdong, R. Hartley. "The 3D-3D Registration Problem Revisited." 2007 IEEE 11th International Conference on Computer Vision, pp. 1-8, 2007
  9. S. Sclaroff, A. Pentland. "Modal matching for correspondence and recognition." In PAMI, June 1995.
  10. M. Leordeanu, M. Hebert. "A spectral technique for correspondence problems using pairwise constraints." In ICCV, Vol. 2, pp. 1482-1489, 2005
  11. Z. Zhang, "A flexible new technique for camera calibration," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.11, pp.1330-1334, 2000. https://doi.org/10.1109/34.888718
  12. J. Lee, "Camera calibration and Compensation distortion", Korea robotics society review, Vol. 10 No, 1, pp. 23-29, February 2013
  13. K.-J Kim, B.-S. Park, D.-W. Kim, Y.-H. Seo, "Point Cloud Registration Algorithm Based on RGB-D Camera for Shooting Volumetric Objects.", JBE Vol. 24, No. 5, pp. 765-774, September 2019.
  14. B. Lin, M. Su, P. Cheng, P. Tseng, S. Chen " Temporal and Spatial Denoising of Depth Maps", Sensors 2015 Vol. 15, No. 8, pp. 18506-18525, August 2015.
  15. J. Digne, C. Franchis, "The Bilateral Filter for Point Clouds", Image Processing on Line Vol. 2017, No. 7, pp.278-287, March 2018.
  16. T. Fang, L. A. Piegl. "Delaunay triangulation in three dimensions." IEEE Computer Graphics and Applications, Vol. 15, No. 5, pp. 62-69, September 1995 https://doi.org/10.1109/38.403829
  17. J. Kim, S. Yoo, K. Min. "Microsoft Kinect-based Indoor Building Information Model Acquisition." Computational Structural Engineering Institute of Korea 31.4 (2018): 207-214. https://doi.org/10.7734/COSEIK.2018.31.4.207
  18. S. Lee, "Convergence Rate of Optimization Algorithms for a Non-strictly Convex Function", Institute of Control Robotics and Systems, pp. 349-350, May 2019.