DOI QR코드

DOI QR Code

Cathodic Electrochemical Deposition of Highly Ordered Mesoporous Manganese Oxide for Supercapacitor Electrodes via Surfactant Templating

  • Lim, Dongwook (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University) ;
  • Park, Taesoon (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University) ;
  • Choi, Yeji (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University) ;
  • Oh, Euntaek (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University) ;
  • Shim, Snag Eun (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University) ;
  • Baeck, Sung-Hyeon (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
  • Received : 2019.10.01
  • Accepted : 2019.12.09
  • Published : 2020.05.31

Abstract

Highly ordered mesoporous manganese oxide films were electrodeposited onto indium tin oxide coated (ITO) glass using sodium dodecyl sulfate (SDS) and ethylene glycol (EG) which were used as a templating agent and stabilizer for the formation of micelle, respectively. The manganese oxide films synthesized with surfactant templating exhibited a highly mesoporous structure with a long-range order, which was confirmed by SAXRD and TEM analysis. The unique porous structure offers a more favorable diffusion pathway for electrolyte transportation and excellent ionic conductivity. Among the synthesized samples, Mn2O3-SDS+EG exhibited the best electrochemical performance for a supercapacitor in the wide range of scan rate, which was attributed to the well-developed mesoporous structure. The Mn2O3 prepared with SDS and EG displayed an outstanding capacitance of 72.04 F g-1, which outperform non-porous Mn2O3 (32.13 F g-1) at a scan rate of 10 mV s-1.

Keywords

References

  1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359(6397), 710-712. https://doi.org/10.1038/359710a0
  2. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science, 1998, 279(5350), 548-552. https://doi.org/10.1126/science.279.5350.548
  3. M. Su, H. Su, B. Du, X. Li, G. Ren and S. Wang, Korean J. Chem. Eng., 2015, 32(5), 852-859. https://doi.org/10.1007/s11814-014-0270-5
  4. K. Miyazawa and S. Inagaki, Chem. Commun., 2000, 21, 2121-2122. https://doi.org/10.1039/B703905K
  5. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka and G. D. Stucky, Adv. Mater., 1998, 10(16), 1380-1385. https://doi.org/10.1002/(SICI)1521-4095(199811)10:16<1380::AID-ADMA1380>3.0.CO;2-8
  6. J. M. Kim and G. D. Stucky, Chem. Commun., 2000, 13, 1159-1160.
  7. F. Schuth, Chem. Mater., 2001, 13(10), 3184-3195. https://doi.org/10.1021/cm011030j
  8. J. Kibsgaard, A. Jackson and T. F. Jaramillo, Nano Energy, 2016, 29, 243-248. https://doi.org/10.1016/j.nanoen.2016.05.005
  9. T. Brezesinski, J. Wang, S. H. Tolbert and B. Dunn, Nat. Mater., 2010, 9(2), 146-151. https://doi.org/10.1038/nmat2612
  10. Y. Wang, C.-M. Yang, W. Schmidt, B. Spliethoff, E. Bill and F. Schuth, Adv. Mater., 2005, 17(1), 53-56. https://doi.org/10.1002/adma.200400777
  11. H. Liu, P. He, Z. Li, D. Sun, H. Huang, J. Li and G. Zhu, Chem.-Asian J., 2006, 1(5), 701-706. https://doi.org/10.1002/asia.200600169
  12. P. A. Nelson and J. R. Owen, J. Electrochem. Soc., 2003, 150(10), A1313-A1317. https://doi.org/10.1149/1.1603247
  13. G. Wang, H. Liu, J. Horvat, B. Wang, S. Qiao, J. Park and H. Ahn, Chem.-Eur. J., 2010, 16(36), 11020-11027. https://doi.org/10.1002/chem.201000562
  14. F. Jiao, K. M. Shaju and P. G. Bruce, Angew. Chem. Int. Ed., 2005, 44(40), 6550-6553. https://doi.org/10.1002/anie.200501663
  15. F. Jiao, J. Bao, A. H. Hill and P. G. Bruce, Angew. Chem. Int. Ed., 2008, 47(50), 9711-9716. https://doi.org/10.1002/anie.200803431
  16. Z. Wu and D. Zhao, Chem. Commun., 2011, 47(12), 3332-3338. https://doi.org/10.1039/c0cc04909c
  17. W. Shen, X. Dong, Y. Zhu, H. Chen and J. Shi, Microporous Mesoporous Mater., 2005, 85(1-2), 157-162. https://doi.org/10.1016/j.micromeso.2005.06.006
  18. J. Chattopadhyay, T. S. Pathak, D. Pak and R. Srivastava, Korean J. Chem. Eng., 2016, 33(5), 1514-1529. https://doi.org/10.1007/s11814-016-0056-z
  19. B. Yue, H. Tang, Z. Kong, K. Zhu, C. Dickinson, W. Zhou and H. He, Chem. Phys. Lett., 2005, 407(1-3), 83-86. https://doi.org/10.1016/j.cplett.2005.03.066
  20. K. Zhu, B. Yue, W. Zhou and H. He, Chem. Commun., 2003, 9, 98-99.
  21. P. Shu, J. Ruan, C. Gao, H. Li and S. Che, Microporous Mesoporous Mater., 2009, 123, 314-323. https://doi.org/10.1016/j.micromeso.2009.04.017
  22. E. Ramasamy, J. Chun and J. Lee, Carbon, 2010, 48, 4563-4565. https://doi.org/10.1016/j.carbon.2010.07.030
  23. Y. Liu, W. Zhao and X. Zhang, Electrochim. Acta, 2008, 53, 3296-3304. https://doi.org/10.1016/j.electacta.2007.11.022
  24. S. Inagaki, Y. Fukushima and K. Kuroda, J. Chem. Soc. Chem. Commun., 1993, 8, 680-682.
  25. S.-H. Baeck, K.-S. Choi, T. F. Jaramillo, G. D. Stucky and E. W. McFarland, Adv. Mater., 2003, 15(15), 1269-1273. https://doi.org/10.1002/adma.200304669
  26. S. Hui, Y. Lifu, J. Junqing and L. Yanling, Energy Convers. Manag., 2011, 52(1), 668-674. https://doi.org/10.1016/j.enconman.2010.07.045
  27. G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 2012, 41(2), 797-828. https://doi.org/10.1039/C1CS15060J
  28. C. Lei, N. Amini, F. Markoulidis, P. Wilson, S. Tennison and C. Lekakou, J. Mater. Chem. A, 2013, 1(19), 6037-6042. https://doi.org/10.1039/c3ta01638b
  29. T. Zhao, H. Jiang and J. Ma, J. Power Sources, 2011, 196(2), 860-864. https://doi.org/10.1016/j.jpowsour.2010.06.042
  30. H. Chen, L. Hu, M. Chen, Y. Yan and L. Wu, Adv. Funct. Mater., 2014, 24, 934-942. https://doi.org/10.1002/adfm.201301747
  31. J.-W. Wang, Y. Chen and B.-Z. Chen, J. Alloys Compd., 2016, 688, 184-197. https://doi.org/10.1016/j.jallcom.2016.07.005
  32. N.-L. Wu, Mater. Chem. Phys., 2002, 75(1-3), 6-11. https://doi.org/10.1016/S0254-0584(02)00022-6
  33. S. K. Jana, B. Saha, B. Satpati and S. Banerjee, Dalt. Trans., 2015, 44(19), 9158-9169. https://doi.org/10.1039/C5DT01025J
  34. C. Natarajan, J. Electrochem. Soc., 1996, 143(5), 1547-1550. https://doi.org/10.1149/1.1836677
  35. H. Xia, Y. Wan, F. Yan and L. Lu, Mater. Chem. Phys., 2014, 143(2), 720-727. https://doi.org/10.1016/j.matchemphys.2013.10.005
  36. Y. Tan, S. Srinivasan and K.-S. Choi, J. Am. Chem. Soc., 2005, 127(10), 3596-3604. https://doi.org/10.1021/ja0434329
  37. Y.-G. Wang, H.-Q. Li and Y.-Y. Xia, Adv. Mater., 2006, 18(19), 2619-2623. https://doi.org/10.1002/adma.200600445
  38. S. Khalid, C. Cao, L. Wang and Y. Zhu, Sci. Rep., 2016, 6, 22699. https://doi.org/10.1038/srep22699