DOI QR코드

DOI QR Code

Determination of the Temperature Increasing Value of Seedling Nursery Period for Oryza2000 Model to Applicate Grid Weather Data

Oryza2000 모형 활용을 위한 육묘기 보온 상승온도 결정

  • Kim, Junhwan (Divison of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Sang, Wangyu (Divison of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Pyeong (Divison of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Jaekyeong (Divison of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Kwon, Dongwon (Divison of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Yunho (Divison of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Jung-Il (Divison of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Myungchul (Divison of Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration)
  • 김준환 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 상완규 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 신평 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 백재경 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 권동원 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 이윤호 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 조정일 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 서명철 (농촌진흥청 국립식량과학원 작물재배생리과)
  • Received : 2020.02.18
  • Accepted : 2020.03.20
  • Published : 2020.03.30

Abstract

Spatial simulation of crop growth often requires application of management conditions to each cell. In particular, it is of great importance to determine the temperature conditions during the nursery period for rice seedlings, which would affect heading date projections. The objective of this study was to determine the value of TMPSB, which is the parameter of ORYZA2000 model to represent temperature increase under a plastic tunnel during the rice seedling periods. Candidate values of TMPSB including 0℃, 2℃, 5℃, 7℃ and 9℃ were used to simulate rice growth and yield. Planting dates were set from mid-April to mid-June. The simulations were performed at four sites including Cheorwon, Suwon, Seosan, and Gwangju where climate conditions at rice fields common in Korea can be represented. It was found that the TMPSB values of 0℃ and 2℃ resulted in a large variation of heading date due to low temperature occurred in mid-April. When the TMPSB value was >7℃, the variation of heading date was relatively small. Still, the TMPSB value of 5℃ resulted in the least variation of heading date for all the planting dates. Our results suggested that the TMPSB value of 5℃ would help reasonable assessment of climate change impact on rice production when high resolution gridded weather data are used as inputs to ORYZA2000 model over South Korea.

최근 고해상도의 격자형 기상자료를 활용한 기후변화 또는 농업기후분석이 시도되고 있다. 모형구동을 위해서는 각 격자별로 재배 정보를 입력해야만 한다. 이러한 입력정보 중 Oryza2000 에서는 육묘기간 온도상승값이 필요하며 이는 지역별로 파종기에 따라 변화될 수밖에 없다. 그러나 격자형 자료를 사용하여 모의할 때는 이것들을 모든 격자에 대해서 변화된 값을 주는 것은 어렵다. 이 문제를 해결하기 위해 철원, 수원, 서산, 광주에 대해서 4 월 중순부터 6 월 중순까지 육묘온도 상승값을 0℃, 2℃, 5℃, 7℃ 및 9℃로 적용하고 가장 변이 발생이 적은 온도를 선택하였다. 0℃와 2℃는 4 월 중순의 낮은 온도가 발생하였을 때 큰 변이를 보여 적절하지 않았으며 7℃이상에서는 변이가 줄어들었으나 모몸살 효과에 따른 출수지연 효과가 지역별로 파종기별로 과대평가되는 경우가 발생할 수도 있다. 따라서 전반적으로는 5℃가 가장 안정적인 출수날짜를 보였으며, 격자형 기상자료를 구동할 때는 이를 활용하는 것이 좋을 것으로 판단된다.

Keywords

References

  1. Basso, B., D. Cammarano, and E. Carfagna, 2013: Review of crop yield forecasting methods and early warning systems. In Proceedings of the first meeting of the scientific advisory committee of the global strategy to improve agricultural and rural statistics, FAO Headquaters, Rome, Italy, 18-19.
  2. Bouman, B. A. M., M. J. Kropff, T. P. Tuong, M. C. S. Wopereis, H. F. M. ten Berge, and H. H. van Laar, 2001: ORYZA2000: modeling lowland rice. IRRI.
  3. Han, H. S., W. Yang, J. Park, Y. Yoon, J. Kim, W. Yang, and J. Park, 2008: Nitrogen management for infant rice seedling with extended nursery duration by delayed transplanting. Korean Journal of Crop Science 53(3), 239-243.
  4. Jame, Y. W., and H. W. Cutforth, 1996: Crop growth models for decision support systems. Canadian Journal of Plant Science 76, 9-19. https://doi.org/10.4141/cjps96-003
  5. Jones, J. W., J. M. Antle, B. Basso, K. J. Boote, R. T. Conant, I. Foster, H. C. J. Godfray, M. Herrero, R. E. Howitt, S. Janssen, B. A. Keating, R. lMunoz-Carpena, C. H. Porter, C. Rosenzweig, and T. R. Wheeler, 2017: Brief history of agricultural systems modeling. Agricultural Systems 155, 240-254. https://doi.org/10.1016/j.agsy.2016.05.014
  6. Kim, D., S. Kim, K. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP 8.5 climate condition. Korean Journal of Agriculture and Forest Meteorology 14(3), 132-141. https://doi.org/10.5532/KJAFM.2012.14.3.132
  7. Kim, H., J. Ko, S. Kang, and J. Tenhunen, 2013: Impact of climate change on paddy rice yield in a temperate climate. Global Change Biology 19, 548-562. https://doi.org/10.1111/gcb.12047
  8. Kim, J., W. Sang, H. Shin, H. Cho, M. Seo, B. Yoo, and K. Kim, 2015: Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. Journal of Crop Science and Biotechnology 18, 257-264. https://doi.org/10.1007/s12892-015-0103-z
  9. Kim, K. S., B. H. Yoo, J. G. Kim, J. Park, 2017: Development of a gridded simulation support system for rice growth based on the ORYZA2000 model. Korean Journal of Agricultural and Forest Meteorology 19(4), 270-279. https://doi.org/10.5532/KJAFM.2017.19.4.270
  10. Lee, C. K., K. S. Kwak, J. H. Kim J. Y. Shon, and W. H. Yang. 2011: Impacts of climate change and follow-up cropping season shift on growing period and temperature in different rice maturity types. Korean Journal of Crop Science 56(3), 233-243. https://doi.org/10.7740/kjcs.2011.56.3.233
  11. Jones, J. W., J. M. Antle, B. Basso, K. J. Boote, R. T. Conant, I. Foster, H. C. J. Godfray, M. Herrero, R. E. Howitt, S. Janssen, B. A. Keating, R. lMunoz-Carpena, C. H. Porter, C. Rosenzweig, and T. R. Wheeler, 2017: Brief history of agricultural systems modeling. Agricultural Systems 155, 240-254. https://doi.org/10.1016/j.agsy.2016.05.014
  12. Yoo, B. H., K. S. Kim, and H. Y. Ban, 2018: Development of a gridded crop growth simulation system for the DSSAT model using script languages, Korean Journal of Agricultural and Forest Meteorology 20(3), 243-251. https://doi.org/10.5532/KJAFM.2018.20.3.243