DOI QR코드

DOI QR Code

Low-cost Assessment of Canopy Light Interception and Leaf Area in Soybean Canopy Cover using RGB Color Images

RGB 컬러 이미지를 이용한 콩의 군락 피복과 엽면적에 대한 저비용 평가

  • Lee, Yun-Ho (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Sang, Wan-Gyu (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Jae-Kyeong (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jun-Hwan (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Jung-Il (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Myung-Chul (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration)
  • 이윤호 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 상완규 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 백재경 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 김준환 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 조정일 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 서명철 (농촌진흥청 국립식량과학원 작물재배생리과)
  • Received : 2020.02.17
  • Accepted : 2020.03.09
  • Published : 2020.03.30

Abstract

This study compared RGB color images with canopy light interception (LI) and leaf area index (LAI) measurements for low cost and low labor. LAI and LI were measured from vertical gap fraction derived from top of digital image in soybean canopy cover (cv Daewonkong, Deapongkong and Pungsannamulkong). RGB color images, LAI, and LI were collected from V4.5 stage to R5stage. Image segmentation was based on excess green minus excess red index (ExG-ExR). There was a linear relationship between LAI measured with LI (r2=0.84). There was alinear relation ship between LI measured with canopy cover on image (CCI) (r2=0.94). There was a significant positive relationship(r2=0.74) between LAI and CCI at all grow ingseason. Therefore, it is expected that in the future, the RGB color image could be able to easily measure the LAI and the LI at low cost and low labor.

본 연구는 저비용·저 노동력을 위해 RGB 컬러 이미지에서 획득한 녹색영역 값과 엽면적 그리고 군락피복 측정을 비교하였다. 시험에 사용된 품종은 국내에서 가장 많이 재배되고 있는 대원콩, 대풍콩 및 풍산나물콩을 재배하였다. 측정 시기는 엽의 4.5엽기부터 종실비대기까지 RGB 컬러 이미지를 획득하여 군락 엽면적과 피복을 비교하였다. 이미지 분석은 ExGR로 토양으로부터 식물체의 녹색 영역을 분리하였다. 분리한 녹색 영역과 실제 측정한 엽면적과 피복과는 고도의 유의성을 보였다. 본 연구 결과에서 알 수 있듯이 실제 측정한 군락 엽면적과 군락 피복과는 정의 상관관계(r2=0.84)를 보였다. 군락 이미지와 실제 측정한 군락 피복과는 고도의 정의상관관계(r2=0.94)를 보였다. 또한 군락 이미지와 실제 측정한 군락 엽면적과는 고도의 정의상관관계(r2=0.74)를 보였다. 따라서 향후 RGB 컬러 이미지로 저비용·저 노동력으로 군락 단위에서 엽면적과 피복을 손쉽게 측정할 수 있을 것으로 기대된다.

Keywords

References

  1. Anderson, H. B., H. Nilsen, H, Tommervik, S. R. Karlsen, S. Nagai, and E. J. Cooper, 2016: Using ordinary digital cameras in place of near-infrared sensors to derive vegetation indices for phenology studies of high arctic vegetation. Remote Sensing 8, 847pp. https://doi.org/10.3390/rs8100847
  2. Araus, J. L., S. C. Kefauver, M. Z. Allah, M. S. Olsen, and J. E. Cairns, 2018: Translating highthroughput phenotyping into genetic gain. Trends in Plant Science 23, 451-466. https://doi.org/10.1016/j.tplants.2018.02.001
  3. Bruin, J. L. D., and P. Pedersen, 2009: New and old soybean cultivar responses to plant density and intercepted light. Crop Science 49(6), 2225-2232. https://doi.org/10.2135/cropsci2009.02.0063
  4. Das, B., R. N. Sahoo, S. Pargal, G. Krishna, V. K. Gupta, R. Verma, and C. Viswanathan, 2016: Measuring leaf index from color digital image of wheat crop. Journal of Agrometeorology 18(1), 22-28.
  5. Easlon, H. M., and A. J. Bloom, 2014: Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement. Applications in Plant Science. doi: 10.3732/apps.1400033
  6. Garcia, J. R., P. Almendros, and M. Quemada, 2012: Ground cover and leaf area index relationship in grass, legume and crucifer crop. Plant Soil Environment 50(8), 385-390.
  7. Gee, C. H., and J. Bossu, 2008: Crop/weed discrimination in perspective agronomic images. Computers and Electronic in Agriculture 60(1), 49-59. https://doi.org/10.1016/j.compag.2007.06.003
  8. Gitelsona, A. A., Y. J. Kaufmanb, R. Starkc, and D. Rundquista, 2002: Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment 80, 76-87. https://doi.org/10.1016/S0034-4257(01)00289-9
  9. Gonia, E. D., D. M. Oosterhuis, A. C. Bibi, and L. C. Purcell, 2012: Estimating light interception by cotton using a digital imaging technique. American Journal of Experimental Agriculture 2(1), 1-8. https://doi.org/10.9734/AJEA/2012/879
  10. Hamuda, E., M. Glavin, and E. Jones. 2016: A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronic in Agriculture 125, 184-199. https://doi.org/10.1016/j.compag.2016.04.024
  11. Jovanovic, N. Z., and G. Annandale, 1998: Measurement of radiant interception of crop canopies with the LAI-2000 plant canopy analyzer. South African Journal of Plant and Soil 15(1), 6-13. https://doi.org/10.1080/02571862.1998.10635107
  12. Kataoka, T., T. Kaneko, H. Okamoto, and S. Hata, 2003: Crop growth estimation system using machine vision. In Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).
  13. Li, L., Q, Zhabg, and D. Huang, 2014: A review of imaging techniques for plant phenotyping. Sensors 14, 20078-20111. https://doi.org/10.3390/s141120078
  14. Liu, J., and E. Pattey, 2010: Retrieval of leaf area index from top-of canopy digital photography over agricultural crops. Agricultural and Forest Meteorology 150(11), 1485-1490. https://doi.org/10.1016/j.agrformet.2010.08.002
  15. Louhaichi, M., M. M. Borman, and D. E. Johnson, 2001: Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International 16, 65-70. https://doi.org/10.1080/10106040108542184
  16. Mao, W., Y. Wang, and Y. Wang, 2003: Real-time detection of between-row weeds using machine vision. Written for presentation at the 2003 ASAE Annual International Meeting Sponsored by ASAE Riviera Hotel and Convention Center Las Vegas, Nevada, USA 27-30 July 2003 Paper Number 031004.
  17. Meyer, G. E., T. W. Hindman, and K. Lakshmi, 1999: Machine vison detection parameters for plant species identification. Meyer, G. E., J. A. De Shazer (Eds), Precision Agriculture and Biological Quality, Proceeding of SPIE Vol 3543, 327-335.
  18. Meyer, G. E., and J. C. Neto, 2008: Verification of color vegetation indices for automated crop imaging applications. Computers and Electronic in Agriculture 63(2), 282-293. https://doi.org/10.1016/j.compag.2008.03.009
  19. Nasirzadehdizaji, R., F. B. Sanli, S. Abdikan, Z. Cakir, A. Sekertekin, and M. Ustuner, 2019: Sensitivity analysis of multi-temporal sentinel-1 SAR parameters to crop height and canopy coverage. Applied Science 9, 655pp. https://doi.org/10.3390/app9040655
  20. Neeto, A. F. A., R. N. Martins, G. S. A. Souza, G. M. Araujo, S. L. H. Almeida, and V. A. Capelini, 2018: Segmentation of RGB images using different vegetation indices and thresholding methods. Nativa Sinop 6(4), 389-394. https://doi.org/10.31413/nativa.v6i4.5405
  21. Otus, N., 1979: A threshold selection method from gray-level histogram. IEEE transactions on Systems, Man, and Cybernetics 9, 62-66. https://doi.org/10.1109/TSMC.1979.4310076
  22. Park, H. K., W. Y. Choi, N. H. Back, S. S. Kim, B. K. Kim, and K. K. Kim, 2004: Estimation of leaf area index by plant canopy analyzer in rice. Korean Journal of Crop Science 49(6), 463-467.
  23. Patrignani, A., and T. E. Ochsner, 2015: Canopeo A powerful new tool for measuring fractional green canopy cover. Agronomy Journal 107(6), 2312-2320. https://doi.org/10.2134/agronj15.0150
  24. Perez, A. J., F. Lopez, J. V. Benlloch, and S. Christensen, 2000: Color and shape analysis techniques for weed detection in cereal fields. Computers and Electronic in Agriculture 25(3), 197-212. https://doi.org/10.1016/S0168-1699(99)00068-X
  25. Purcell, L. C., 2000: Soybean canopy coverage and light interception measurements using digital imagery. Crop Science 40(3), 834-837. https://doi.org/10.2135/cropsci2000.403834x
  26. Richter, G. L., A. J. Zanon, N. A. Streck, J. V. C. Guedes, B. Kraulich, T. S. M. D Rocha, J. E. M. Winck, and J. C. Cera, 2014: Estimating leaf area of modern soybean cultivars by a non-destructive method. Crop Production and Management 73(4), 416-425.
  27. Setiyono, T. D., A. Weiss, J. E. Specht, K. G. Cassman, and A. Dobermann, 2008: Leaf area index simulation in soybean grown udder nearoptimal conditions. Field Crops Research 108(1), 82-92. https://doi.org/10.1016/j.fcr.2008.03.005
  28. Shepherd, M. J., L. E. Lindey, and A. J. Lindsey, 2018: Soybean canopy cover measured with Canopeo compared with light interception. Agricultural & Environmental Letters 3(1), 1-3. https://doi.org/10.2134/ael2017.01.0001tr
  29. Shiraiw, T., Y. Kawasaki, and K. Homma, 2011: Estimation of crop radiation use efficiency. Japanese Journal of Crop Science 80(3), 360-364. https://doi.org/10.1626/jcs.80.360
  30. Stewart, A. M., 2007: Measuring canopy coverage with digital imaging. Communication in Soil Science and Plant Analysis 38, 895-902. https://doi.org/10.1080/00103620701277718
  31. Tagliapietra, E. L., N. A. Streck, T. S. M. Rocha, G. L. Richter, M. R. Silva, J. C. Cera, J. V. C. G. Guedes, and A. J. Zanon, 2018: Optimum leaf area index to reach soybean yield potential in subtropical environment. Agronomy Journal 1109(3), 932-938.
  32. Woebbecke, D., G. M. Meyer, K. Von, and D. Mortensen, 1993: Plant species identification, size, and enumeration using machine vision techniques on near-binary images, in SPIE Conference on Optics in Agriculture and Forestry, Boston, USA, 208-219.
  33. Woebbecke, D. M., G. M. Meyer, K. V. Bargen, and D. A. Mortensen, 1995: Color indices for weed identification under various soil, residue, and lighting conditions. Transaction of the American Society of Agricultural and Biological Engineers 38(1), 259-269. https://doi.org/10.13031/2013.27838
  34. Yang, W., S. Wang, X. Zhao, J. Zhang, and J. Feng, 2015: Greenness identification based on HSV decision tree. Information Processing in Agriculture 2, 149-160. https://doi.org/10.1016/j.inpa.2015.07.003