DOI QR코드

DOI QR Code

Half-space albedo problem for İnönü, linear and quadratic anisotropic scattering

  • Tureci, R.G. (Kirikkale University, Kirikkale Vocational School, Center Campus)
  • Received : 2019.05.22
  • Accepted : 2019.10.09
  • Published : 2020.04.25

Abstract

This study is concerned with the investigation of the half-space albedo problem for "İnönü-linear-quadratic anisotropic scattering" by the usage of Modified FN method. The method is based on Case's method. Therefore, Case's eigenfunctions and its orthogonality properties are derived for anisotropic scattering of interest. Albedo values are calculated for various linear, quadratic and İnönü anisotropic scattering coefficients and tabulated in Tables.

Keywords

References

  1. B. Davison, Neutron Transport Theory, Oxford University Press, London, 1958.
  2. M.M.R. Williams, Mathematical Methods in Particle Transport Theory, Oxford University Press, London, 1971.
  3. G.I. Bell, S. Glasstone, Nuclear Reactor Theory, Von Nostrand Reinhold, New York, 1972.
  4. K.M. Case, Elementary solutions of the transport equation and their applications, Ann. Phys. 9 (1) (1960) 1-23, https://doi.org/10.1016/0003-4916(60)90060-9.
  5. K.M. Case, P.F. Zweifel, Linear Transport Theory, Addition-Wesley, MA, 1967.
  6. C.E. Siewert, P. Benoist, The FN method in neutron-transport theory, Part I: theory and applications, Nucl. Sci. Eng. 69 (1979) 156. https://doi.org/10.13182/NSE79-1
  7. P. Grandjean, C.E. Siewert, The FN method in neutron-transport theory, Part II: applications and numerical results, Nucl. Sci. Eng. 69 (1979) 161. https://doi.org/10.13182/NSE79-A20608
  8. A. Kavenoky, The CN method of solving the transport equation: application to plane geometry, Nucl. Sci. Eng. 65 (1978) 209-225. https://doi.org/10.13182/NSE78-A27152
  9. C. Tezcan, A. Kaskas, M.C. Gulecyuz, The H-N method for solving linear transport equation: theory and Applications, J. Quant. Spectrosc. Radiat. Transfer 78 (2) (2003) 243-254. https://doi.org/10.1016/S0022-4073(02)00224-8
  10. K.M. Case, F. de Hoffmann, G. Placzek, Introduction to the Theory of Neutron Diffusion, Los Alamos, New Mexico, 1953.
  11. J. Mika, Neutron transport with anisotropic scattering, Nucl. Sci. Eng. 11 (1961) 415. https://doi.org/10.13182/NSE61-1
  12. N.J. McCormick, I. Kuscer, Half-space neutron transport with linearly anisotropic scattering, J. Math. Phys. 6 (12) (1965) 1939. https://doi.org/10.1063/1.1704744
  13. V. Protopopescu, N.G. Sjostrand, On the solution of the dispersion equation for monoenergetic neutron transport with linearly anisotropic scattering, Prog. Nucl. Energy 7 (1) (1981) 47. https://doi.org/10.1016/0149-1970(81)90059-7
  14. A. Kavenoky, The CN Method of solving the transport equation: application to plane geometry, Nucl. Sci. Eng. 65 (1978) 209. https://doi.org/10.13182/NSE78-A27152
  15. D.C. Sahni, N.G. Sjostrand, N.S. Garis, Criticality and time eigenvalues for onespeed neutrons in a slab with forward and backward scattering, J. Phys. D Appl. Phys. 25 (10) (1992) 1381. https://doi.org/10.1088/0022-3727/25/10/001
  16. R.G. Tureci, D. Türeci, Time dependent albedo problem for quadratic anisotropic scattering, Kerntechnik 72 (1-2) (2007) 59. https://doi.org/10.3139/124.100319
  17. R.G. Tureci, The albedo problem for pure-quadratic anisotropic scattering with Inonu scattering, Kerntechnik 75 (5) (2010) 292. https://doi.org/10.3139/124.110086
  18. E. Inonu, A theorem on anisotropic scattering, Transp. Theory Stat. Phys. 3 (1973) 137-147. https://doi.org/10.1080/00411457308205276
  19. E. Inonu, Scalar and time inversion of the linear mono-energetic Boltzmann equation, Phys. Fluids 19 (1976) 1332-1335. https://doi.org/10.1063/1.861659
  20. C.E. Siewert, M.M.R. Williams, The effect of anisotropic scattering on the critical slab problem in neutron transport theory using a synthetic kernel, J. Phys. D Appl. Phys. 10 (15) (1977) 2031-2040. https://doi.org/10.1088/0022-3727/10/15/007
  21. M.M.R. Williams, A synthetic scattering kernel for particle transport in absorbing media with anisotropic scattering, J. Phys. D Appl. Phys. 11 (18) (1978) 2455-2463. https://doi.org/10.1088/0022-3727/11/18/004
  22. D.C. Sahni, N.G. Sjostrand, Criticality eigenvalues of the one-speed transport equation with strong forward-backward scattering-relationship with rod model, Transp. Theory Stat. Phys. 27 (2) (1998) 137-158. https://doi.org/10.1080/00411459808205812
  23. C. Devaux, C.E. Siewert, Y. Yener, The effect of forward and backward scattering on the spherical albedo for a finite plane-parallel atmosphere, J. Quant. Spectrosc. Radiat. Transfer 21 (6) (1979) 505-509. https://doi.org/10.1016/0022-4073(79)90091-8
  24. C. Tezcan, R. Sever, The critical slab with the backward-forward-isotropic scattering model, Ann. Nucl. Energy 12 (10) (1985) 573-576. https://doi.org/10.1016/0306-4549(85)90030-1
  25. M.M.R. Williams, The energy-dependent backward-forward-isotropic scattering model with some applications to the neutron transport equation, Ann. Nucl. Energy 12 (4) (1985) 167-176. https://doi.org/10.1016/0306-4549(85)90042-8
  26. C. Tezcan, C. Yildiz, The effect of forward, backward and linear anisotropic scattering on the critical slab thickness, J. Quant. Spectrosc. Radiat. Transfer 53 (6) (1995) 687-691. https://doi.org/10.1016/0022-4073(95)00019-H
  27. C. Yildiz, E. Alcan, The effect of strong anisotropic scattering on the critical sphere problem in neutron transport theory using a synthetic kernel, Ann. Nucl. Energy 22 (10) (1995) 671-679. https://doi.org/10.1016/0306-4549(94)00092-S
  28. C. Yildiz, Variation of the albedo and the transmission factor with forward and backward scattering in neutron transport theory- the FN method, Ann. Nucl. Energy 27 (9) (2000) 831-840. https://doi.org/10.1016/S0306-4549(00)00002-5
  29. F.S. de Azevedo, E. Sauter, P.H.A. Konzen, M. Thompson, Numerical results for the transport equation with strongly anisotropic scattering in a slab, Ann. Nucl. Energy 79 (2015) 61-67. https://doi.org/10.1016/j.anucene.2015.01.017
  30. R.G. Tureci, D. Tureci, Half-space albedo problem with Modified FN method for linear and quadratic anisotropic scattering, Kerntechnik 82 (2) (2017) 239-245. https://doi.org/10.3139/124.110641
  31. R.G. Tureci, D. Tureci, Slab albedo for linearly and quadratically anisotropic scattering kernel with Modified FN method, Kerntechnik 82 (5) (2017) 693-699. https://doi.org/10.3139/124.110806
  32. R.G. Tureci, The Half-Space Albedo Calculations with the Linear-Quadratic Anisotropic Scattering with Singular Eigenfunction Method, vol. 13, Suleyman Demirel University Faculty of Arts and Sciences Journal of Science, 2018, pp. 144-153 (2).
  33. R.G. Tureci, Lineer-Kuadratik Anizotropik Sacilma Icin Kritiklik Probleminde Yansitici Ozdegerleri, vol. 14, Suleyman Demirel University Faculty of Arts and Sciences Journal of Science, 2019, pp. 1-15 (1).
  34. Mathematica Software, Wolfram researches, UK.

Cited by

  1. Critical thickness problem for tetra-anisotropic scattering in the reflected reactor system vol.95, pp.4, 2021, https://doi.org/10.1007/s12043-021-02190-1